{ "cells": [ { "cell_type": "markdown", "id": "7bbbdeaa-39ca-49af-ba34-87a2d5e07813", "metadata": {}, "source": [ "## 8 - Exploratory Factor Analysis\n", "### Finding latent variables in data" ] }, { "cell_type": "markdown", "id": "ee890cda-3b0f-4867-be51-97d7b8dc48e6", "metadata": {}, "source": [ "We now start to move from the traditional modelling framework of using some variables to predict another, and into the realm of exploratory factor analysis (EFA). EFA is a *multivariate* technique which means that it has no clear distinction on what a 'predictor' or an 'outcome' variable is - rather, the aim of EFA is to take a set of variables and find another set of variables that represent the original ones. These are the so-called **latent** variables that, under the EFA model, are assumed to \"give rise\" to the original set of variables.\n", "\n", "EFA is commonly used to distil psychological constructs from things like questionnaire data. A popular example in psychology of this is the Big Five personality traits, which emerge from EFA of people rating adjectives about personalities to the extent they feel that are like that - e.g. \"outgoing\", \"anxious\".\n", "\n", "The key thing to remember is that EFA is also a linear model. You can think about it from the following somewhat quirky perspective - what an EFA does is takes each of your original variables, and tries to come up with a set of predictor variables that predicts each original variable well. It has to do that simultaneously for each of the original variables - so its really just coming up with a set of variables that 'best explain' all the observed variables at once!\n", "\n", "Lets see how we can fit one in Python. To do so, we'll use a new package, the `factor_analyzer` package, which has a model called `FactorAnalyzer`. Below we import a few key things as well as the new module." ] }, { "cell_type": "code", "execution_count": 1, "id": "a05336ae-3d46-4a5f-9e78-b41a4b7782aa", "metadata": {}, "outputs": [], "source": [ "# Import what we need\n", "import pandas as pd # dataframes\n", "import seaborn as sns # plots\n", "import statsmodels.formula.api as smf # Models\n", "import marginaleffects as me # marginal effects\n", "import numpy as np # numpy for some functions\n", "import pingouin as pg\n", "from factor_analyzer import FactorAnalyzer # Note we write from factor_analyzer\n" ] }, { "cell_type": "markdown", "id": "247795a9-71d3-4318-a32a-7ce2fd453625", "metadata": {}, "source": [ "To examine this idea, we'll rely on a classic idea - that of the *g* factor of intelligence. The dataset below is taken from JASP's examples and comes from Spearman (1908) himself. It represents a set of scores on the following variables for a group of students:\n", "\n", "- Pitch - Score in pitch discrimination test.\n", "- Light - Score in light discrimination test.\n", "- Weight - Score in weight discrimination test.\n", "- Classics - School grade for classic studies.\n", "- French - School grade for French.\n", "- English - School grade for English.\n", "- Mathematics - School grade for mathematics.\n", "\n", "We can read in the data from the following link, then look at the top 5 rows. https://raw.githubusercontent.com/alexjonesphd/py4psy2024/refs/heads/main/G%20Factor.csv" ] }, { "cell_type": "code", "execution_count": 2, "id": "3c993988-33ac-43ed-aaf7-1d4061ecfe7f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PitchLightWeightClassicsFrenchEnglishMathematics
0501041619107
131065665
2101065665
36010922232222
441251112
\n", "
" ], "text/plain": [ " Pitch Light Weight Classics French English Mathematics\n", "0 50 10 4 16 19 10 7\n", "1 3 10 6 5 6 6 5\n", "2 10 10 6 5 6 6 5\n", "3 60 10 9 22 23 22 22\n", "4 4 12 5 1 1 1 2" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Read in data\n", "g = pd.read_csv('https://raw.githubusercontent.com/alexjonesphd/py4psy2024/refs/heads/main/G%20Factor.csv')\n", "g.head(5)" ] }, { "cell_type": "markdown", "id": "287c36a4-3cc7-4fd5-a9a8-0004d73ba87d", "metadata": {}, "source": [ "Our goal is to find the underlying *g* variable - that is, 'intelligence' - a latent variable that gives rise to all of the scores we see across the tests. We do this by making a `FactorAnalyzer` model and fitting it to the data. Notice a key thing here - we deliberately set the number of factors to 1. This is a crucial consideration. In EFA you *must* specify the number of factors you want to see *before you start!*" ] }, { "cell_type": "code", "execution_count": 3, "id": "d6b1d62c-2006-42a1-b3b6-cbc81c139589", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/miniconda3/envs/py11/lib/python3.11/site-packages/factor_analyzer/factor_analyzer.py:663: UserWarning: No rotation will be performed when the number of factors equals 1.\n" ] } ], "source": [ "# Build and fit an EFA with a single factor\n", "efa = FactorAnalyzer(n_factors=1).fit(g)" ] }, { "cell_type": "markdown", "id": "ab2fa319-67eb-4da1-aa15-f72170d03949", "metadata": {}, "source": [ "With this single model, there are many things to inspect to understand the overall result. Let's take a look at them!" ] }, { "cell_type": "markdown", "id": "74f64afd-e056-47d5-80bf-6bd665369f30", "metadata": {}, "source": [ "### Factor Loadings\n", "The first key bit of information is how the original variables correlate with the discovered factor(s). In our example with *g*, we will see how each individual test correlates with the general measure of intelligence. These are often referred to as 'factor loadings', but don't let the term confuse you - they are correlations of the original variables with the discovered latent variables. We can obtain them from the `.loadings` attribute; here put into a dataframe to look nicer." ] }, { "cell_type": "code", "execution_count": 4, "id": "8d897996-1fff-426c-af43-5ef5091844f0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
g_factor
Pitch0.220054
Light0.162702
Weight0.094585
Classics0.975240
French0.939743
English0.833758
Mathematics0.911261
\n", "
" ], "text/plain": [ " g_factor\n", "Pitch 0.220054\n", "Light 0.162702\n", "Weight 0.094585\n", "Classics 0.975240\n", "French 0.939743\n", "English 0.833758\n", "Mathematics 0.911261" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Obtain loadings\n", "g_loadings = pd.DataFrame(efa.loadings_,\n", " columns=['g_factor'],\n", " index=g.columns)\n", "\n", "g_loadings" ] }, { "cell_type": "markdown", "id": "12db62fd-1f1a-4b75-a652-f41256e6145f", "metadata": {}, "source": [ "This illustrates scores on mathematics, classics, and French tests are all *very* strongly correlated with the discovered factor. Conversely, the weight and light tests are poorly correlated. That is, the general intelligence variable does not influence them much.\n", "\n", "**Convention suggests that if a variable has a correlation with a factor of greater than .4 or less than -.4, it is \"loaded\" on that factor**." ] }, { "cell_type": "markdown", "id": "b5a9257e-280f-4ab7-bc02-c9a956eafb50", "metadata": {}, "source": [ "### Factor variances\n", "Another important bit of information EFA gives us is the *explained variance* of the factors. The latent variables will, depending on the data and number of them, do a more or less good job of explaining th variance in the *original variables*. \n", "\n", "We can obtain these from our models `.get_factor_variance()` method, which returns a list of three types - variance of factors (less useful), variance due to each factor (very handy) and cumulative variance. In our case here there is only one value, but later examples will see more factors and thus more variance." ] }, { "cell_type": "code", "execution_count": 5, "id": "20012b8d-55a4-4309-bd05-78bef92d02a3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([3.44360164]), array([0.49194309]), array([0.49194309]))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get factor variances\n", "efa.get_factor_variance() \n", "# 1. Variance of each factor\n", "# 2. Amount of variance each factor is responsible for in the data\n", "# 3. The cumulative variance across the factors" ] }, { "cell_type": "markdown", "id": "be05feca-d8e3-4a2f-9d6c-d886573a48fe", "metadata": {}, "source": [ "### Communalities\n", "This is another example of statisticians using weird words to describe a concept we already know about. Each original variable has a 'communality' value - this is simply the amount of variance the factors explain in that variable - remember, an EFA is 'figuring out' the *predictors* of a regression for each of the variables. A good EFA model has high communalities for all variables, typically above .7. In using EFA to build psychometric tests we might drop questions with low communalities. We get communalities like so:" ] }, { "cell_type": "code", "execution_count": 6, "id": "9ff8141f-4b71-4389-b5d8-d762a7c74eac", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
communality
Pitch0.048424
Light0.026472
Weight0.008946
Classics0.951093
French0.883117
English0.695152
Mathematics0.830397
\n", "
" ], "text/plain": [ " communality\n", "Pitch 0.048424\n", "Light 0.026472\n", "Weight 0.008946\n", "Classics 0.951093\n", "French 0.883117\n", "English 0.695152\n", "Mathematics 0.830397" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get communalities\n", "comms = pd.DataFrame(efa.get_communalities(), columns=['communality'], index=g.columns)\n", "comms" ] }, { "cell_type": "markdown", "id": "f5342382-ce3a-4ff1-a8f0-fbfda913fca8", "metadata": {}, "source": [ "These look OK for classics, french and mathematics, but poorer for the others - in this simple case the interpretation is similar to the loadings we saw earlier." ] }, { "cell_type": "markdown", "id": "559bcb35-e598-49d1-85e1-6b27aed3c482", "metadata": {}, "source": [ "### The latent factors themselves\n", "Finally, if we want to, we can obtain an actual estimate of the latent variable itself from the model. This is useful to examine or to even perhaps include in another model. We do this by asking our EFA model to `transform` the original data, whereupon we get a representation of the latent variable(s). In this case, we obtan scores on *g*, which look like a Z-scored variable, with higher numbers indicating more intelligence." ] }, { "cell_type": "code", "execution_count": 7, "id": "32c585ca-59c1-4a18-a9b1-a36441c40079", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
g_factor
00.255022
1-1.004152
2-1.011543
31.510647
4-1.594142
5-1.303185
60.282946
71.690320
8-0.255428
9-1.250707
10-0.752566
111.069516
12-0.096286
13-1.396858
14-0.135562
150.692286
161.349655
171.112337
180.828171
190.383408
20-0.237878
210.668323
22-0.804324
\n", "
" ], "text/plain": [ " g_factor\n", "0 0.255022\n", "1 -1.004152\n", "2 -1.011543\n", "3 1.510647\n", "4 -1.594142\n", "5 -1.303185\n", "6 0.282946\n", "7 1.690320\n", "8 -0.255428\n", "9 -1.250707\n", "10 -0.752566\n", "11 1.069516\n", "12 -0.096286\n", "13 -1.396858\n", "14 -0.135562\n", "15 0.692286\n", "16 1.349655\n", "17 1.112337\n", "18 0.828171\n", "19 0.383408\n", "20 -0.237878\n", "21 0.668323\n", "22 -0.804324" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Obtain latent scores\n", "latent = efa.transform(g)\n", "\n", "# Put it in a dataframe\n", "latent = pd.DataFrame(latent, columns=['g_factor'])\n", "latent" ] }, { "cell_type": "markdown", "id": "fc6ea7e0-1582-49d1-bb92-eda0197bae34", "metadata": {}, "source": [ "### Psychometrics and EFA\n", "A common use case for EFA is in the developmental of psychometric tests or questionnaires. Researchers can use EFA uncover a latent set of dimensions underpinning responses to a questionnaire. In this way they can refine the test by dropping some items, including more, or establishing how many 'things' their test is measuring (i.e. is it measuring 5 aspects of personality, or a single construct like intelligence?).\n", "\n", "Lets see an example of a larger dataset with more than one latent factor - specifically, the Big Five personality variables. This dataset contains responses from 2,800 people on the Big Five Inventory, a questionnaire measuring personality. There are 25 questions, each asking the person to say how much they agree with a particular statement. The EFA model thus assumes there are several latent variables that give rise to peoples responses on these questions, and our aim is to find them.\n", "\n", "The specific questions are available [here](https://vincentarelbundock.github.io/Rdatasets/doc/psych/bfi.html), along with the data at this link: https://vincentarelbundock.github.io/Rdatasets/csv/psych/bfi.csv\n", "\n", "First, we can read it in and display it. If you take a closer look at the columns, you can see there are five questions for each trait, with each question denoted by an initial and a number, e.g. E1 is the first question measuring Extraversion, O2 the second for Openness, and so on." ] }, { "cell_type": "code", "execution_count": 8, "id": "5c900dcc-a250-44cd-a4a0-4aaf472d957c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
rownamesA1A2A3A4A5C1C2C3C4...N4N5O1O2O3O4O5gendereducationage
0616172.04.03.04.04.02.03.03.04.0...2.03.03.063.04.03.01NaN16
1616182.04.05.02.05.05.04.04.03.0...5.05.04.024.03.03.02NaN18
2616205.04.05.04.04.04.05.04.02.0...2.03.04.025.05.02.02NaN17
3616214.04.06.05.05.04.04.03.05.0...4.01.03.034.03.05.02NaN17
4616222.03.03.04.05.04.04.05.03.0...4.03.03.034.03.03.01NaN17
\n", "

5 rows × 29 columns

\n", "
" ], "text/plain": [ " rownames A1 A2 A3 A4 A5 C1 C2 C3 C4 ... N4 N5 O1 \\\n", "0 61617 2.0 4.0 3.0 4.0 4.0 2.0 3.0 3.0 4.0 ... 2.0 3.0 3.0 \n", "1 61618 2.0 4.0 5.0 2.0 5.0 5.0 4.0 4.0 3.0 ... 5.0 5.0 4.0 \n", "2 61620 5.0 4.0 5.0 4.0 4.0 4.0 5.0 4.0 2.0 ... 2.0 3.0 4.0 \n", "3 61621 4.0 4.0 6.0 5.0 5.0 4.0 4.0 3.0 5.0 ... 4.0 1.0 3.0 \n", "4 61622 2.0 3.0 3.0 4.0 5.0 4.0 4.0 5.0 3.0 ... 4.0 3.0 3.0 \n", "\n", " O2 O3 O4 O5 gender education age \n", "0 6 3.0 4.0 3.0 1 NaN 16 \n", "1 2 4.0 3.0 3.0 2 NaN 18 \n", "2 2 5.0 5.0 2.0 2 NaN 17 \n", "3 3 4.0 3.0 5.0 2 NaN 17 \n", "4 3 4.0 3.0 3.0 1 NaN 17 \n", "\n", "[5 rows x 29 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Big five data\n", "bf = pd.read_csv('https://vincentarelbundock.github.io/Rdatasets/csv/psych/bfi.csv')\n", "bf.head(5)" ] }, { "cell_type": "markdown", "id": "5115b7e6-677b-451a-b2ad-73d1685bb8cb", "metadata": {}, "source": [ "We drop the `rownames`, `gender`, `education`, and `age` columns for now." ] }, { "cell_type": "code", "execution_count": 9, "id": "7966a334-a2c9-40be-b2b9-e0948afa094a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A1A2A3A4A5C1C2C3C4C5...N1N2N3N4N5O1O2O3O4O5
02.04.03.04.04.02.03.03.04.04.0...3.04.02.02.03.03.063.04.03.0
12.04.05.02.05.05.04.04.03.04.0...3.03.03.05.05.04.024.03.03.0
25.04.05.04.04.04.05.04.02.05.0...4.05.04.02.03.04.025.05.02.0
34.04.06.05.05.04.04.03.05.05.0...2.05.02.04.01.03.034.03.05.0
42.03.03.04.05.04.04.05.03.02.0...2.03.04.04.03.03.034.03.03.0
\n", "

5 rows × 25 columns

\n", "
" ], "text/plain": [ " A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 ... N1 N2 N3 N4 \\\n", "0 2.0 4.0 3.0 4.0 4.0 2.0 3.0 3.0 4.0 4.0 ... 3.0 4.0 2.0 2.0 \n", "1 2.0 4.0 5.0 2.0 5.0 5.0 4.0 4.0 3.0 4.0 ... 3.0 3.0 3.0 5.0 \n", "2 5.0 4.0 5.0 4.0 4.0 4.0 5.0 4.0 2.0 5.0 ... 4.0 5.0 4.0 2.0 \n", "3 4.0 4.0 6.0 5.0 5.0 4.0 4.0 3.0 5.0 5.0 ... 2.0 5.0 2.0 4.0 \n", "4 2.0 3.0 3.0 4.0 5.0 4.0 4.0 5.0 3.0 2.0 ... 2.0 3.0 4.0 4.0 \n", "\n", " N5 O1 O2 O3 O4 O5 \n", "0 3.0 3.0 6 3.0 4.0 3.0 \n", "1 5.0 4.0 2 4.0 3.0 3.0 \n", "2 3.0 4.0 2 5.0 5.0 2.0 \n", "3 1.0 3.0 3 4.0 3.0 5.0 \n", "4 3.0 3.0 3 4.0 3.0 3.0 \n", "\n", "[5 rows x 25 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Drop the non-required columns\n", "bf2 = bf.drop(columns=['rownames', 'gender', 'education', 'age'])\n", "bf2.head()" ] }, { "cell_type": "markdown", "id": "c6584bb7-1122-4f8a-bbaa-5a56271b1e2a", "metadata": {}, "source": [ "We should first decide what to do with the missing data present here, as there are some:" ] }, { "cell_type": "code", "execution_count": 10, "id": "af7228f6-6927-4a95-a640-44447387fed6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "A1 0.005714\n", "A2 0.009643\n", "A3 0.009286\n", "A4 0.006786\n", "A5 0.005714\n", "C1 0.007500\n", "C2 0.008571\n", "C3 0.007143\n", "C4 0.009286\n", "C5 0.005714\n", "E1 0.008214\n", "E2 0.005714\n", "E3 0.008929\n", "E4 0.003214\n", "E5 0.007500\n", "N1 0.007857\n", "N2 0.007500\n", "N3 0.003929\n", "N4 0.012857\n", "N5 0.010357\n", "O1 0.007857\n", "O2 0.000000\n", "O3 0.010000\n", "O4 0.005000\n", "O5 0.007143\n", "dtype: float64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Show missing data percentages\n", "bf2.isnull().mean()" ] }, { "cell_type": "markdown", "id": "bed62781-390c-4f87-9f20-470896f47ac9", "metadata": {}, "source": [ "An easy solution here is to drop any missing data and analyse only the complete cases." ] }, { "cell_type": "code", "execution_count": 11, "id": "31b89d6f-2305-4ca6-ab12-7c3e2e6f0a12", "metadata": {}, "outputs": [], "source": [ "# Complete cases\n", "bf3 = bf2.dropna(how='any')" ] }, { "cell_type": "markdown", "id": "4e48bb89-e124-44ad-91c2-574b152df375", "metadata": {}, "source": [ "We're now ready to begin an EFA model. Our goal is to find latent the latent variables that have given rise to the responses across the questionnaire. \n", "\n", "The first question is, of course, how many factors to find! In this case, we have a bit of theory to guide us - there *should* be five factors, so we will look for 5. We build our EFA model like so, and the first thing we'll look at is the loadings matrix:" ] }, { "cell_type": "code", "execution_count": 12, "id": "a0942db1-9f9c-4953-8414-510f13a2328a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
fac1fac2fac3fac4fac5
A10.1490.1230.064-0.462-0.058
A20.0460.1180.0650.611-0.005
A30.0370.2360.0100.621-0.015
A4-0.0270.1200.1880.411-0.174
A5-0.0850.331-0.0310.4890.007
C10.073-0.0300.567-0.0280.159
C20.162-0.0900.6970.0400.048
C30.030-0.0920.5970.066-0.063
C40.1730.070-0.6520.029-0.057
C50.209-0.069-0.5610.0260.089
E1-0.034-0.6360.159-0.007-0.027
E20.143-0.7110.0450.013-0.000
E30.0930.545-0.0490.1560.233
E4-0.0190.660-0.0330.202-0.135
E50.1380.4980.229-0.0340.157
N10.8360.2060.023-0.248-0.103
N20.7910.1350.039-0.218-0.026
N30.7410.0120.001-0.022-0.022
N40.533-0.311-0.0900.0740.087
N50.529-0.1390.0390.139-0.170
O10.0180.1930.039-0.0050.491
O20.1880.043-0.0610.112-0.484
O30.0520.299-0.0310.0450.577
O40.171-0.232-0.0130.1840.370
O50.1050.034-0.0140.017-0.543
\n", "
" ], "text/plain": [ " fac1 fac2 fac3 fac4 fac5\n", "A1 0.149 0.123 0.064 -0.462 -0.058\n", "A2 0.046 0.118 0.065 0.611 -0.005\n", "A3 0.037 0.236 0.010 0.621 -0.015\n", "A4 -0.027 0.120 0.188 0.411 -0.174\n", "A5 -0.085 0.331 -0.031 0.489 0.007\n", "C1 0.073 -0.030 0.567 -0.028 0.159\n", "C2 0.162 -0.090 0.697 0.040 0.048\n", "C3 0.030 -0.092 0.597 0.066 -0.063\n", "C4 0.173 0.070 -0.652 0.029 -0.057\n", "C5 0.209 -0.069 -0.561 0.026 0.089\n", "E1 -0.034 -0.636 0.159 -0.007 -0.027\n", "E2 0.143 -0.711 0.045 0.013 -0.000\n", "E3 0.093 0.545 -0.049 0.156 0.233\n", "E4 -0.019 0.660 -0.033 0.202 -0.135\n", "E5 0.138 0.498 0.229 -0.034 0.157\n", "N1 0.836 0.206 0.023 -0.248 -0.103\n", "N2 0.791 0.135 0.039 -0.218 -0.026\n", "N3 0.741 0.012 0.001 -0.022 -0.022\n", "N4 0.533 -0.311 -0.090 0.074 0.087\n", "N5 0.529 -0.139 0.039 0.139 -0.170\n", "O1 0.018 0.193 0.039 -0.005 0.491\n", "O2 0.188 0.043 -0.061 0.112 -0.484\n", "O3 0.052 0.299 -0.031 0.045 0.577\n", "O4 0.171 -0.232 -0.013 0.184 0.370\n", "O5 0.105 0.034 -0.014 0.017 -0.543" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Build EFA \n", "big5_efa = FactorAnalyzer(n_factors=5).fit(bf3)\n", "\n", "# Extract loadings\n", "big5_loadings = pd.DataFrame(big5_efa.loadings_, \n", " columns=['fac1', 'fac2', 'fac3', 'fac4', 'fac5'],\n", " index=bf3.columns)\n", "\n", "# Examine\n", "big5_loadings.round(3)" ] }, { "cell_type": "markdown", "id": "e2cb484f-c4b6-4c29-88e4-283d7edd357a", "metadata": {}, "source": [ "That's a LOT of information to take in! How do we know what's going on? We can use `seaborn` to visualise a loading-heatmap for us with a single line of code. This allows us to visually \"see\" the loading hotspots." ] }, { "cell_type": "code", "execution_count": 13, "id": "544c5540-68ca-4e40-b814-2ab6b9d7ff7b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAGdCAYAAACl74FWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1xTZ/v/P4Qdwg6EITJkJewp04FCsc5Wq3W2alutHU9rx6Pt09bHUWvtflqtdXS5Z+tiKqIgAqIoU1AZMsIIK0CY4fcHv5wvhwwREyDpeb9eeb3MyX0f7vt4xnWu+7quj1pfX18fKCgoKCgoKCieEtpoD4CCgoKCgoJCNaCMCgoKCgoKCgq5QBkVFBQUFBQUFHKBMiooKCgoKCgo5AJlVFBQUFBQUFDIBcqooKCgoKCgoJALlFFBQUFBQUFBIRcoo4KCgoKCgoJCLlBGBQUFBQUFBYVc0BjtAchi+/btoz0EpUZDY0z/945p9PT0RnsISs2CBQtGewhKS2pq6mgPQWl57rnnFP431NTU5LYvVSxoPeynzvXr1xEeHo7IyEjExsaSfvvXv/6FlJQU5Obmgs1mIzs7+2nHOSL4+vpi4sSJYDAYqKurQ2JiIioqKiS21dPTw7Rp02BhYQETExPcvHkTiYmJpDYeHh6YNWuWWN8vv/wSvb29CpnDaOHt7Y2AgAAwGAzU19fj8uXLqKyslNhWT08PU6ZMgYWFBYyNjZGVlYWkpCRSG09PT7i5uYHJZAIAampqcPXqVXC5XIXPZaRxc3ODj48P6HQ6GhoakJqaiurqaqntraysEBISAhMTE7S1tSE7Oxt5eXmkNlpaWpg4cSIcHBygra0NPp+P1NRUlJeXK3o6I05fXx9+/fVXnD17Fnw+HxwOB+vXr4e9vf2Q+icmJuK///0vwsLCxF5k6urqsHv3bqSnp6OzsxM2NjbYsGEDXFxcFDGVEaevrw+JiYnIyMiAQCCAjY0N5s2bBxaLJbNfTk4OEhISwOPxYGpqiqioKLi7u5PaNDc3IyYmBkVFReju7gaTycT8+fMxbtw4RU5J4cjTqFBFhm1UHDhwAG+99Rb27duH8vJyjB8/nvitr68Pq1atQnp6Ou7evSuXgSoaNpuN6dOnIy4uDhUVFfDx8cGiRYuwd+9etLS0iLXX0NBAe3s7rl+/joCAAKn77ejowC+//ELapmoGhYuLCyIiIpCQkIDKykp4eXlhwYIFOHDgAPh8vlh7dXV1CAQC3LhxA35+fhL3aWNjg4KCAlRVVaGnpweBgYF44YUX8Ouvv6K1tVXRUxoxHB0dERYWRhhMHA4Hs2bNwpEjRyTOU19fHzNnzkR+fj4uXboECwsLTJo0CQKBAA8fPgQA0Gg0zJkzBwKBAHFxcWhtbQWDwUB3d/dIT29EOHz4MI4dO4aPPvoINjY2+P333/Huu+/i8OHDoNPpMvtyuVzs2rULXl5eYr/x+XysW7cOPj4+2LlzJ4yNjVFZWQkGg6GoqYw4ycnJSElJwQsvvAAmk4nLly9j3759eP/996GtrS2xT1lZGY4cOYLIyEi4ubkhLy8Phw8fxtq1a4nnQHt7O3bv3o0JEyZg5cqV0NPTQ0NDA3R1dUdyehSjwLBiKtra2nD8+HG8/vrrmDVrFn777TfS7z/88APeeOMNODg4yGOMI0JgYCDu3LmDO3fugMfjITExES0tLfDx8ZHYvrm5GYmJicjNzUVnZ6fMfbe1tZE+qoa/vz9ycnKQk5ODhoYGJCUlgc/nw9vbW2L7lpYWXL58GXl5eVKP3YULF5CdnY3a2lo0NDQgLi4OampqsLW1VeBMRh4vLy8UFBSgoKAAjY2NSE1NRWtrq9hbnwg3Nze0trYiNTUVjY2NKCgoQGFhIelYs9lsaGtrIyYmBlwuF62treByueDxeCM0q5Gjr68Px48fx4oVKzB58mQ4ODjg448/RmdnJxISEmT27e3txebNm7Fq1SpYWlqK/X7o0CGYm5vjo48+AofDgaWlJfz9/WFtba2o6YwofX19SE1NxdSpU+Hu7g4LCwssXLgQ3d3dMr3LqampcHR0xNSpU2Fubo6pU6fC0dGRtGyTnJwMIyMjvPDCC7CxsYGJiQkcHR1hamo6AjNTLGpqanL7qCLDMiqOHTsGFxcXuLi4YNmyZfj111+Vem2IRqPBwsICJSUlpO0lJSVP7arT0tLCunXr8MYbb+CFF154rFtR2RAdu9LSUtL20tJSud58NTQ0QKPRIBAI5LbP0YZGo8HMzAyPHj0ibX/06JHU88TCwkKsfXl5OczMzECj9V/OdnZ2qKmpQXh4OF5++WUsWrQIvr6+KnkTq66uRkNDA8lbqKWlBW9vb+Tm5srs+9tvv8HIyEjiEiUApKSkwMXFBZ988glmz56NVatW4ezZs3Id/2jS0NAAPp8PJycnYpuGhgbs7e1RVlYmtV9ZWRmpDwA4OTmR+hQUFMDa2hqHDh3Cli1b8P333yMjI0P+kxgFRtOo2LVrF+zt7aGjowM/Pz9cu3ZNZvtDhw7By8sLdDodlpaWWLlypcJfLoZlVOzfvx/Lli0DAERHR6O1tRWXLl2S68BGEjqdDhqNJuZFaGtre6qAPR6Ph/Pnz+PkyZP4+++/0dPTg+XLl8PY2Phphzxm0NXVVcixG8zkyZPR2toq82anbOjo6Eg0lNrb26W67el0Otrb20nbBAIB1NXVoaOjAwAwMDCAg4MDaDQaLly4gKysLHh7e0tdalJmRDdIExMT0nZjY2OZN8+7d+/iwoUL+PDDD6W2qa6uxt9//41x48bh66+/xty5c/H999+LxZApK6LlNX19fdJ2fX19icuWA/s9rk9DQwPS09NhamqKVatWISgoCGfPnkVWVpYcZzA60Gg0uX2ehGPHjuGdd97Bxx9/jNu3byM8PBwzZsyQGieVkpKCFStWYPXq1cjLy8OJEyeQmZmJV155RR6HQSpPHFNx7949ZGRk4PTp0/070NDAokWLcODAAUyfPn3YA+ns7BRzhff09IxqBsPTvtlVVVWhqqqK+F5RUYFVq1bB39//sa5ZZUdNTU1u3qvAwEC4urri2LFjKhePAohHgA/3vBPtR01NDQKBAFeuXEFfXx/q6uqgp6cHb29v3Lx586nHO5rEx8fjq6++Ir7v2LFDYru+vj6px7G9vR1bt27Fhx9+CCMjI6l/SygUwtXVFWvWrAEAODs7o6SkBH/99Reio6OHP4lR4vbt2zhz5gzx/eWXX5bYTtaxk8bgPn19fbC2tiaOk7W1NWpqapCenq6Sxu1I8M0332D16tWEUfDdd98hLi4Ou3fvlpgpeePGDdjZ2eHtt98GANjb22PNmjX48ssvFTrOJ35i79+/Hz09PSTXdl9fHzQ1NdHY2Djst/Dt27fjv//9L2lbRETEUxkqQ6W9vR1CoVDszZpOp8s9BqK6ulqlPBUCgUDqsRv8Rj0cAgICMHHiRBw/fhx1dXVPvb+xREdHB4RCoZhXQldXV+qxk+TF0NXVRW9vL2GUt7W1QSgUkoyVxsZG6OnpgUajQSgUynkmI0dYWBg4HA7xXRR82tDQQGQKAUBTU5OY90JEZWUlqqursWHDBmKb6JhMmTIFhw4dgrW1NUxNTcVieGxtbZGcnCy3+YwkHA4HNjY2xHeRgc7n82FgYEBsFwX2SoPBYIh5Mgb30dfXh7m5OamNubn5Y5eklAF5LiNKepnW1tYWC5Lt6upCVlYW6ZwFgKioKFy/fl3ivkNCQvDxxx/j4sWLmDFjBmpra3Hy5EnMnDlTbuOXxBP5X3p6evDHH3/g66+/RnZ2NvG5c+cObG1tcejQoWEPZOPGjWhubiZ9pkyZMuz9PQlCoRBcLlcsBc3e3l5qSulwYbFYKpW9IDp2km6+0lJKh0pAQACCg4Nx8uRJ1NTUPNW+xiJCoRB1dXWkGz0AjBs3Tup8uVyuWJyPjY0N6urqiAcjl8uFoaEhqY2RkRFhbCgzdDod48aNIz52dnYwMTFBZmYm0UYUaCgt2HX8+PH4/fffceDAAeITGhoKHx8fHDhwgHgYenh4SIx3sbCwUNwEFYi2tjaYTCbxMTc3h76+Pu7fv0+06enpQUlJicyAaFtbW1IfACguLib1sbW1RX19PalNXV2dTM+QsiDPmIrt27fD0NCQ9JHkdaivr0dvb69YrBWLxZKaZh8SEoJDhw5h0aJF0NLSgoWFBYyMjPC///1PIcdFxBMZFefPn0djYyNWr14Nd3d30mfBggXYv38/AOD+/fvIzs4Gl8uFQCAgjI+uri6p+9bW1oaBgQHpM5JLHxkZGfDy8oKnpydMTU0xbdo0GBgY4Pbt2wD61/QHB3SZm5vD3NwcWlpaoNPpMDc3J0U3h4WFwd7eHkZGRjA3N8ezzz4Lc3NzYp+qws2bN+Hp6Ql3d3eYmJhg6tSpMDAwwJ07dwAA4eHhePbZZ0l9HnfsAgMDERYWhtjYWLS0tEBPTw96enrQ1NQc0bkpmjt37oDNZsPV1RXGxsYIDQ2Fvr4+8UYXFBSEadOmEe3z8vKgr6+PkJAQGBsbw9XVVawWTF5eHnR0dBAWFgZDQ0PY2trC19dXJd4SB6OmpoaFCxfi4MGDuHr1Kh4+fIjPP/8c2traiIyMJNpt3boVP//8M4D+e42DgwPpw2AwQKfT4eDgQJxjCxcuRF5eHv744w9UVFQgISEB586dG5ECSyOBmpoaQkNDkZSUhNzcXHC5XJw4cQKampqkbKJjx46R4khCQ0NRXFyMK1euoLa2FleuXMH9+/cRGhpKtAkLC0N5eTmSkpJQX1+P7OxsZGRkIDg4eCSnOOaR9DK9ceNGqe0He0lkLVXl5+fj7bffxqeffoqsrCzExsaipKQEa9eulescBvNET+39+/dj+vTpYm9BADB//nx8/vnnuHXrFtavX09yEYrSMktKSmBnZ/d0I1YQBQUF0NXVRWhoKFH86vjx40SNCgaDQXIRAsDq1auJf1taWsLNzQ1NTU3YvXs3gP6b14wZM6Cnp4fOzk7U1NTg0KFDMgsbKSP37t2Drq4uQkJCoKenh/r6epw6dYp07AYHdr300kvEvy0sLMDhcNDc3EzU9PD29oaGhgbmzp1L6peamirV3aeM3L9/H9ra2vD394eenh4R3CvyZtHpdJJbmc/n48KFCwgNDYWHhwfa2tqQkpJC1KgA+l3R586dQ2hoKBYtWoS2tjbcvXtX5YxZEUuWLEFnZye+/vprtLa2gs1m45tvviEtE9XU1Dyx25rNZmPbtm345Zdf8Pvvv8PS0hJvvfUWoqKi5D2FUWPy5Mno7u7G33//TRS/Wr16Ncn93tTURDp2tra2WLx4MeLj45GQkAATExMsWbKEVKvIxsYGy5cvR2xsLC5dugRjY2PMnj1baoq+MiHP5Q9JSx2SYDKZUFdXF/NK1NbWSs0U2759O0JDQ/HBBx8A6C8oqKenh/DwcGzdulViGrU8UOsbw7mgVJnup4Mq0z18qDLdTwdVpnv4UGW6h89IeJEeV1DtSXiSuLOJEyfCz88Pu3btIrZxOBzMnTtX4rNy/vz50NDQwLFjx4htaWlpCAkJQWVlJaysrJ5u8FKgBMUoKCgoKCjGOOvXr8e+fftw4MABFBQU4N1330V5eTmxnLFx40asWLGCaD979mycPn0au3fvxsOHD5Gamoq3334bgYGBCjMogDEuKEZBQUFBQTGWGK0icosWLQKPx8PmzZtRXV0Nd3d3XLx4kQiQra6uJtWsePnll8Hn8/Hjjz/ivffeg5GRESIiIqSmYcuLMb38MVgzg+LJkFXAhkI2lEbB0yGKK6J4cganDVIMnaVLlyr8bwyOD3saVPEeTS1/UFBQUFBQUMgFuUuf37lzB1988QVSUlJQX18POzs7rF27Fv/617/kMmBFwuFw4OnpCTqdjsbGRqSlpcmU2ra0tERQUBCMjY3R3t6OO3fuoKCggPjd2dlZYq2N/fv3q1xlSC8vLwQEBBAZDElJSTKlzydPngwWiwVjY2PcunULV65cIbXx8PAAh8MhSZ+npKRQ0ud4vPT53LlzJequlJWV4cKFCwqZw2iyaNEivPzyyzAzM8ODBw+wY8cO3Lp1S2p7TU1NrF27FrNmzQKTyURNTQ1++eUX/PXXXwCACRMm4I033gCHw4G1tTV27NiBgwcPjtBsRh4PDw84OjpCS0sLPB4PmZmZaG5ultnHxsYGXl5eYDAYaG1tRXZ2Nqmmj7m5OdhsNkxMTECn05GcnCz3mj+jhSpq6MgTuUufZ2VlwczMDAcPHoSNjQ2uX7+O1157Derq6njzzTflNnB54+DggODgYKSkpKCmpgZsNhszZszA8ePHJVbV1NfXR3R0NAoLC5GUlAQWi4WwsDB0dHSQhMm6urpI0beAakqfT506FZcuXUJlZSU8PT3x/PPP47fffpMpfS6rZK+NjQ0KCwtRVVWF3t5eBAQEYP78+fj9999VqniYIqTPY2NjSboCOjo6WLRokVjBIlXgmWeewb///W9s3boVt2/fxgsvvIDdu3dj7ty5Ug3Qr7/+GiYmJvjss89QXl4OExMTqKurE7/r6OigoqIC8fHxMrVBVAEOhwM2m420tDS0tLTA3d0dEREROHfuHHp6eiT2YTKZCAsLw927d/Ho0SPY2NggPDwc8fHxhN6KhoYGmpqa8PDhQ0yaNGkkp6RwKKNCNsMyKkTS55mZmeByufjtt9/w6aefAgBWrVpFauvg4IC0tDScPn16TBsVnp6euHfvHu7duwegP/Vm3Lhx4HA4pGp9IthsNlpbW5GWlgagP5fbzMwMnp6eJKOir69PpZQ1JeHn50dInwPAlStXYGdnBy8vL6SkpIi1b2lpQVJSEgBIrXp48eJF0vf4+Hg4OTlh/PjxyM/Pl/MMRo+B0udAfzrh+PHj4e7ujhs3boi1Hyh9DvSX3zY3N4e3tzdhVAwu++vk5ISenh48ePBAwbMZeVasWIHTp08TWkRffvklUZ/j+++/F2sfGhoKPz8/zJgxg6ijMlCfB+gvHiby/LzzzjuKncAo4+rqitzcXKJyaFpaGubPnw87OzupRqirqyu4XC5xjPLy8mBubg5XV1fivByse6RKUEaFbEZE+ry5uVlqHf6xAI1GA5PJFHPPVVRUSC0swmKxJLY3MzMjnXSamppYvHgxlixZgmeeeYZUNVIVoNFoYLFYYuqhZWVlck1bEkmfd3R0yG2fo42ipM8Hw2azUVxcLPXNU1nR0NAAh8MRK4Z2/fp1UkXIgUyZMgX5+flYtWoVEhMTce7cObz33ntDKkCkajAYDOjq6pKW2oRCIWpqamBmZia1H5PJFFueq66ultmH4p+DwqXP09LScPz4cULpbywiTYJaIBBILXSiq6srsT2NRiMkqJuamnDlyhXExcXh8uXL6O3txdy5c8UqcyozIunzwUVc5C19PmnSJEr6HEOTPh+IqPz5wFgfVcHY2BgaGhpiEuc8Hk+q8T5u3Dj4+PjA0dER77zzDr788ktERkbi448/HokhjylE58tgQ72jo0PiuTSw35P2USXkqf2hiihU+jwvLw9z587Fp59+SqrDLwlJam3d3d0jqvUgLwlqEbW1taitrSW+c7lcPP/883B3d1epUtOA/I/dQAICAuDi4oLjx4+rXDwKIH/p84Gw2WzweDzSeajqyDp+NBoNfX192LBhAxGzsnPnTnzzzTfYtm2b2D1IlbCzs0NgYCDxXRQcPZzzbwxXIlA4qmoMyAuFSZ/n5+cjIiICr776Kv7zn/88dr+SpM9nzZqF2bNnP+kQnxhpEtQ6OjpSy6gKBAKxWga6uroQCoUyXfR1dXUq5amQJX0uD9l4f39/BAYG4uTJk2Kqh8qOoqTPRWhoaMDR0VFiTJAq0NjYiJ6eHjGvhImJiZj3QkRdXR1qa2tJQbAPHz4klvEGFg9SNSoqKkjXkCg4VVdXl3TP0tbWlnkP6+joELv3SfJeUPwzUYj0eV5eHqZOnYqXXnoJ27ZtG9K+Jam1RUdHP/mMhoFQKER9fb1YGp4sCeqamhoxCepx48ahrq5OphVvamqqUoGbojVYSdLnTxuo5e/vj6CgIJw+fZqSPv//DEX6XMSECROgrq5OBB+rGj09PcjPzxdTvgwODiaptg4kOzsbZmZmpIeinZ0dent7VfIcG0hPTw9aW1uJT3NzMwQCAUlYSmRc1dXVSd1PfX29mPy7paWlzD6qBI1Gk9tHFZG79LnIoIiMjMT69evB5XLB5XIfe8JJkj4fyaWPu3fvwtXVFS4uLjAyMkJwcDAYDAaxFh0QEECqOVFQUAAGg4GgoCAYGRkRgat3794l2vj6+mLcuHHQ19eHqakpJk+eDCaTqVLZC0B/GrGHhwchfT5lyhTo6+sT0udhYWFiBqKZmRnMzMygqakJOp0OMzMzUjBvQEAAQkNDERcXh+bmZtDpdNDpdEr6fAjS5yLYbDZKSkpU2qX/xx9/YP78+Zg3bx7s7e3x4YcfwtLSEsePHwcA/Otf/yK92Fy4cAHNzc3YunUrHBwc4Ofnh/Xr1+PMmTPEcdLQ0CCuZ01NTZibm8PFxUXM+FMFCgsL4ebmhnHjxsHQ0BDBwcHo6elBaWkp0SY4OJgU+FpYWAhLS0twOBwYGBiAw+HAwsIChYWFRBsNDQ0YGxsTnmsGgwFjY2O5inGNFlRMhWzkLn2+ceNG1NXV4dChQ4TnAuh/cx14oo41Hj58CB0dHfj6+hJFiGJiYmRKUMfGxiI4OBhubm5oa2vD9evXSemk2traCA8PB51OR1dXF+rr63H27FmVs+jv3bsHHR0dBAUFEcWvTp8+TdSo0NPTE1vyGSh8Y2FhATabjebmZuzbtw9Af6qlhoYG5syZQ+p3/fp1Io1XFVCE9DkAGBoawsrKCmfPnh3R+Yw0cXFxMDIywtq1a2FmZob79+9j3bp1RHaCmZkZ6U1cIBDgtddew8aNG3H06FE0NzcjLi4O//vf/4g25ubmOHnyJPF95cqVWLlyJTIzM8VS5pWd/Px8qKurIzAwEFpaWqivr8fly5dJmUJ6enok72t9fT1SUlLg5eUFT09PtLa2IiUlhbTkZGJiQoqjE9WjefDggcRUaQrVgdL+UGFUsa78SEFpfzwdlPbH8KG0P4bPSGh/mJuby21fqhhATamUUlBQUFBQDBFVXbaQF6oZKUJBQUFBQUEx4oxpT8XAevwUT46qxW6MJGw2e7SHoNSoYj2RkYJ6Ex7bUP8/shnTRgUFBQUFBcVYgjIqZCN36XMej4elS5fi7t274PF4MDc3x9y5c/H555+P+aJPbDYbHh4e0NXVRVNTE27cuCEzd93CwgITJ06EkZER2tvbkZOTQ0qrGoiDgwOmTp2KsrIyJCYmKmoKo0ZQUBAmTZoEfX191NTU4Pz581Kzfdzc3BAUFARLS0toaGigpqYGiYmJKC4ultje09MTS5YsQV5eHv78808FzmJ0cHFxgZubG+h0OpqampCRkSEzgIvFYiEgIIA473Jzc1FUVET8bmRkBG9vb5iamoLBYCAjI0Mly3SLePHFF7Fq1Soi++OLL75AVlaW1PaamppYt24dZs+eDSaTCS6Xi19++YWoErxgwQLMnTsXjo6OAPozJL777jtCME/V8PDwwIQJEwjp85s3bw5J+tzT05OQPr9z5w5JC8nMzAwcDodII7169arKSJ+ran0JeTHsoyOSPk9JSSFVoaPRaJg7dy7Onj2LoqIi/Pbbb0hMTMTatWvlMmBFYW9vj4kTJyI7Oxt//fUXuFwunnnmGan6FQwGA1FRUeByufjrr79w584dBAUFwc7OTmLbwMBAqVLMyo6npydmzZqFpKQk/PDDDygtLcXKlSslph4D/ce6uLgYv/32G/73v//h4cOHeOmllyQKkBkZGWHmzJmkVF1Vws7ODgEBAcjJycG5c+dQU1OD6dOnyzzvpk2bhpqaGpw7dw45OTkIDAzE+PHjiTbq6urg8/nIysqSWplTVYiOjsbGjRuxZ88ezJ8/H1lZWdizZw8pjXQw3377LYKCgvDJJ5/g2WefxQcffEBKyQ0MDMSFCxewcuVKLFmyBNXV1di7d69co/7HCqIaKTdv3kRcXBw6OjowdepUaGhIf99kMpkIDQ1FSUkJYmJiUFJSgrCwMFJlUw0NDTQ2NuLmzZsjMQ2KMcSwjAqR9Pnrr7+OWbNm4bfffiN+MzY2xuuvvw5/f3/Y2tpi2rRpWLduHa5duyavMSsEd3d3FBUVoaioCM3NzUhPT0dbW5vUtXU2m422tjakp6ejubmZ6Ovh4UFqp6amhsmTJ+PWrVuE1LKqERYWhps3byIzMxN1dXU4f/48mpubERQUJLH9+fPniTcXHo+HuLg48Hg8sWOtpqaGF198EQkJCWhoaBiJqYw4HA4H9+/fR3FxMZqbm5GZmYm2tja4uLhIbO/s7Iy2tjZkZmaiubkZxcXFuH//Ptzc3Ig2PB4PWVlZKC0tFauyqWq8/PLLOHXqFE6dOoWHDx/iiy++QHV1NV588UWJ7cPCwuDv74+1a9ciLS0NVVVVyMnJIRUP+/DDD3H06FEUFhaipKQEn376KWg0mtTzWZkRSZ9XVFSgubkZaWlp0NDQkPhyJMLFxQVcLhf5+floaWlBfn4+uFwu6Zytrq7G3bt3VcY7MRCq+JVsFC59XlVVhdOnT2Py5MlPNVBFIpI+r6ysJG2vrKyU+nZibm4usT2TySSdLN7e3ujo6CC5p1UJdXV1WFtbiy1dFBcXi5Xuloaamhq0tbXF3qqnTZuGtrY2lX3bodFoMDU1FStnXlVVJVVG2tzcXGL7wefdPwFNTU1wOBykpqaStsuSPp86dSry8vKwatUqJCUl4eLFi/jggw9kSp/r6OhAQ0PjsUsCyoaenh50dXVJHlShUIja2lowmUyp/f7p0ueUUSEbhUmfL168GHQ6HdbW1jAwMCAqJY5FZEmfSyuCNBTpc1F535SUFMUMfAxAp9MJd/tA+Hw+9PX1h7SP8PBwaGpqkkqc29raIiAgAKdOnZLreMcS2traEs87SYJNIiQJNw0+7/4pGBkZSZU+l/ZQHDduHHx9feHk5IS3334bX3zxBaKiovDJJ59I/Tvr169HbW2tSlVyBf6vwJskGXNZxd/+6dLnFLJ5YqNCJH0uci8OlD4fyLfffotbt27hr7/+woMHD7B+/XqZ++3s7ERLSwvp093d/aTDG1FkFSPV1NTElClTkJKSotLaC9JQU1Mbkjyyl5cXpk+fjiNHjhCqplpaWli0aBFOnTql8jEBw0HacR3DxXEViiTpbmnHQiR9/uGHHyInJwdXr17Fjh07MG/ePIneilWrVmHmzJl4++230dXVpZDxjxR2dnZ44YUXiI8o4FDSsXrSc0lV37olQXkqZKMw6XMLCwtYWFjA1dUVpqamCA8PxyeffCI1gEqS9Pns2bMxd+7cJx3iEyOSoJYkZS5NUVQgEEiUoBZJnxsbG0NfX59U/150Eq1cuRInT55UiTLa7e3t6O3tFfNKiKLCZeHp6Yn58+fj0KFDuH//PrHd1NQUJiYmeOmll4htomO3bds2fP311yoRY9HZ2SnxvNPR0ZF63kl6ixSdd/8047WpqQk9PT1iXonhSp9bWFigrKyM2L5y5Uq89tprWL16tUosXw5V+vxxMuaSvBKPk0tXJVTVGJAXT2RUDJQ+j4qKIv0meji8+eabYv1EVq+sm97GjRvFvBmHDx9+kuENm4HS5wNvKlZWVqTMloHU1taKqRZaW1ujvr4efX19aG5uJlLURPj5+UFTUxM3btwg3sqVnd7eXlRWVsLR0RF5eXnEdkdHR5lqrF5eXliwYAGOHDkiJs1dV1eHb7/9lrQtKioK2traOHfunMqsbQuFQvB4PFhaWpLOMysrKzx69EhiH0nnnZWVFXHe/ZPo7u5Gfn4+QkJCSMuvISEhuHz5ssQ+t2/fxjPPPAM6nU54wUTS5wNjC1atWoU1a9bg1VdfJZ3XyoxI+nwgAoEAFhYWaGxsBNDvyTE3N5cqHQ/0C4pZWlqSrtt/kvQ5hWyeyKgYKH0+OF1QJH3u4OCAmpoaBAQEgMFgID8/Hx9++CFCQ0NlRhRra2uLuR9HUuY6NzcXkydPJt5kXF1dwWAwiLoT/v7+RL410C99zmazMXHiRBQWFsLc3BzOzs64cuUKgP6HrehCFSEyqgZvV3ZSUlKwcOFCVFZWoqysjKjdkZ6eDgB45plnYGhoSMhRe3l5YeHChTh37hzKy8sJFc7u7m50dnaip6dHrD6I6C1IVt0QZSQ/Px9hYWHg8Xioq6uDs7Mz9PT0iBu2SDVXFJdTVFQEV1dX+Pv7o7i4GGZmZnB0dCTOS6D/wSC6Pmk0Guh0OoyNjdHT06MS3rGB/Pbbb9ixYwfy8vKQnZ2NF154AZaWljh27BgA4N1334W5uTk2btwIoF/6fO3atdi2bRt+/PFHGBkZ4f3338fp06eJ63PVqlV4++238cEHHxBBsEC/V07VluNE0ud8Ph98Ph9ubm4Spc/b29tx584dAP1L4NOnTwebzUZlZSWsra1hYWGBhIQEoo+GhgZJXVdPTw9GRkbo6upS+mNIeSpkI3fp84KCApw6dQrvvvsuOjs7YWNjg+eff37MK++VlJRAR0cHPj4+oNPpaGxsRHx8PGHZ6+rqki6S1tZWxMfHY+LEiWCz2Whvb8eNGzfGtLy7orh79y7odDqmTZsGfX19cLlc/Pbbb2hqagIAGBgYwMjIiGg/ceJEqKurY968eZg3bx6xPSsrCydOnBjZwY8ypaWl0NbWhpeXF1F07dKlS4QnS1dXl1SzQhQUHRAQAFdXV7S3tyMjI4Pk6dDV1SVJxru7u8Pd3R1cLhdxcXEjN7kRIDY2FkZGRnj99ddhZmaG4uJirFmzhsiQYTKZpCXX9vZ2vPLKK/j4449x/PhxNDU1IS4uDt9//z3RZvHixdDS0iJtA4CffvoJP/3008hMbIQoKCiAhoYGAgICCOnzpKQkkvQ5nU4Xkz5PTU2Fp6enTOnz6dOnE99F0ucPHz5UeulzqviVbMa09Pn+/ftHewhKjbQKlRSPh9L+eDp27Ngx2kNQWv7zn/+M9hCUliVLlij8bzg4OMhtXwOLrqkKlPYHBQUFBQXFEKGWP2RDGRUUFBQUFBRDhDIqZDOmjYqBMQwUT84/pcKdIlBVrZGRwsvLa7SHoLQMtRItxehAGRWyoSJOKCgoKCgoKOSC3KXPB8Lj8eDl5YXKyko0NjaSMgDGKm5ubpgwYQI0NTXR0NCArKysxwqBjRs3Du7u7kTBp5ycHJIuyIQJE+Do6EhE8Tc3NyMvL0+lVEu9vLwQEBAAPT098Hg8JCUliWmjiNDT08PkyZPBYrFgbGyMW7duEam4Ijw8PMDhcIh0vpqaGqSkpKjUMRMREBCAkJAQ6Ovro7a2FrGxsVLrozAYDDzzzDOwtLSEqakp0tPTxa4/Go2G8PBweHl5wcDAAPX19UhMTCQVGFMlIiMjMWvWLBgZGaGiogJ//PGHWO0TSTg7O+PTTz/Fo0ePiJRToP96XrBgARwcHGBmZoY//vgDMTExipzCqNHX14e///4bycnJaG9vh4ODA5YtW0YqbjiYyspK/PXXXygtLQWPx8OLL74oVrfogw8+kFiAbOrUqVi+fLnc5zGSUJ4K2chd+nwgq1evhqen57AHN9K4urrCxcUFWVlZSExMREdHB6ZMmSJTBtjU1BTBwcEoKytDXFwcysrKEBISAhMTE6KNQCDA3bt3ER8fj/j4eNTW1iIsLAwGBgYjMS2F4+LigqlTpyI9PR1//vknKioq8Pzzz0vV/lBXV4dAIEB6errUgjk2NjYoLCzE8ePHceTIEfD5fMyfP1/llsTc3NwQHR2Na9eu4eeff0Z5eTmWLVsmVTZeQ0MDbW1tuHbtmlQDKyIiAn5+foiJicFPP/2EmzdvYtGiRbCwsFDkVEaFoKAgrFixAn/99Rc2btyIe/fuYcOGDSQZbkno6upi3bp1yM3NFftNS0sLtbW1OHLkiMrVlBlMTEwM4uPjsWzZMnzyyScwNDTEV199JbWiKwB0dXXBzMwMCxYskHqefvLJJ/j222+Jz3vvvQeg34BWdmg0mtw+qojcpc9F7N69G01NTXj//fefdowjhrOzM/Lz81FZWUnIn6urq8tc43R2dkZNTQ0KCgrA5/NRUFCAmpoaODs7E22qqqpQXV2N1tZWwpPR09Pz2BufsuDn54ecnBzk5OSgoaEBV65cAZ/Pl7qu3tLSgqSkJOTn50utsnrx4kXcuXMHdXV1aGhoQHx8PNTU1DB+/HhFTmXECQ4Oxq1bt3Dr1i3U19cjNjYWzc3N8Pf3l9i+qakJsbGxuHPnjtRj5+XlhWvXrqG4uBiNjY24efMmHjx4gJCQEEVOZVSYOXMmkpKSkJSUhKqqKvzxxx/g8Xik8viSeOWVV5Camiox7frhw4c4fPgw0tLSSPUaVI2+vj4kJCRg1qxZ8PPzw7hx47B69Wp0dXURheskYW9vj4ULF2LixIlSX7gMDAxgaGhIfO7cuUMILFKoNgqRPs/Pz8fmzZvxxx9/KI01Jk0GuK6uTubD39TUVOyNkcvlSlVJVFNTg42NjUR1RWWERqOBxWKRypsDQFlZGaysrOT2dzQ0NECj0VRKX0BdXR1WVlZ48OABafuDBw/ESnE/6X4HPwy7u7tVziBTV1eHvb09Sd0W6C/GNtCoH4xo6U2VFXCHQl1dHZqbm+Hm5kZs09TUhIuLi1yXynp6enDjxg2EhYWpxNIBJSgmm2HFVEiTPp8+fTo6OzuxePFi7Ny5E+PHjx9ycY/Ozk6xN6/u7u4RK9UtEsiRJOk7WDhscL+hyAAbGhpi2rRpxA0/NTX1sbEayoCuri5oNJpY6d22tjaZZdmflEmTJqG1tVXMeFFm6HQ6aDSamA5MW1vbUy3zPHjwgFiSa2xshL29PVxdXVXuJmZgYAB1dXUxLZjm5mapbnkLCwssXrwYmzZtglAoHIlhjllE95/By7AGBgZyfeG5desW2tvbERoaKrd9jiaqdh3Jmyc2KkTS5yKxrIHS59OnT8fGjRvBZrMJo2OoSFIpnT9/Pl544YUnHeKQsLW1JUrHAsC1a9fktm9JJx2fz0d8fDw0NTUxbtw4BAYGIikpSSUMC0Cy/LS8CAgIgIuLC44fP47e3l657XesIO+itjExMZgzZw4h7tfQ0IDbt2/Dx8dHrn9nrCJN+lxNTQ1vvvkmTp48qZIBv48jLS0Nf/zxB/H9nXfeASD5WpXn9Xvt2jV4eHgQCtYUqo3cpc8vX76MnJwcnDx5kvgN6K/B//HHH4sZDiIkqZSePXv2SYc3ZCorK0nWuGiZZrDnQV4ywEKhkNARaWxshImJCZydnXHz5s2nnstoIhAIIBQKSfoUQP9buDyUWP39/REYGIiTJ0+SZJtVgfb2dgiFQjGvhJ6e3mNl4x+336NHj0JDQwO6urrg8/mYPn26ygUdtrS0oLe3V8wrYWBgINFY19XVxYQJE2BnZ4eXX34ZQP/Dk0aj4eDBg9i+fbvKKJJKwtvbm1RiWrRE1tzcTMrMa2lpkVsQeX19PfLz8yWqVysro7mkv2vXLuzcuRPV1dVwc3PDd999h/DwcKntOzs7sXnzZhw8eBBcLhfjxo3Dxx9/jFWrVilsjHKXPj916hQpcjgzMxOrVq3CtWvXMGHCBKn7HmmVUlkywCIhLBqNBjMzM7E124HweDywWCwUFRUR2ywsLB77ABTdzJQdoVCImpoa2NraktZhB38fDv7+/ggKCsKpU6dUTp0U6FeyraqqwoQJEwg1XABi34eLSJWURqOBw+Go3AOzt7cXJSUl8PT0JBnnHh4eyMrKEmsvEAjwwQcfkLZFRUWBw+Hgu+++U3npbl1dXejq6hLf+/r6YGhoiPz8fCIYvaenB/fu3ZObhzglJQUGBgZKlQX4OEZr+ePYsWN45513sGvXLoSGhmLPnj2YMWMG8vPzpcZLLVy4EDU1Ndi/fz8cHR1RW1ur8OBjuUufD7ZIRQ9XNps95utUFBUVgc1mg8/no7W1FWw2G729vaR1/IkTJ6K9vR05OTlEn4iICLi6uhIywCwWC5cuXSL6eHh4oLq6Gu3t7dDU1MT48eNhZmZGkqtWZrKysjBjxgzU1NSgqqoKnp6e0NfXJ6SSw8LCwGAwSPUURNU+NTU1QafTYWZmht7eXjQ0NAD4v9oNFy9eRHNzMxHX0t3dje7u7hGeoeJIS0vD888/j6qqKjx69Ah+fn4wNDQkHpLTpk2DgYEBzpw5Q/QRpYZqaWmBTqfDwsICvb29xEPR2toaBgYG4HK50NfXx5QpU6CmpobU1NSRn6CCuXDhAt544w08fPgQRUVFmDZtGphMJhITEwEAL774IoyNjbF792709fWhoqKC1L+5uRnd3d2k7erq6hg3bhyA/uVdY2Nj2NraoqOjQ6WMWzU1NURGRuL8+fMwNzcHi8XChQsXoKWlhYkTJxLt9u7dC2NjYyxYsABAv+EhUoHt6elBU1MTysvLoa2tDRaLRfQTCoVITU1FSEgI1NXVR3ZyKsg333yD1atX45VXXgEAfPfdd4iLi8Pu3buxfft2sfaxsbFITk7Gw4cPiRIH8oxzk4bcpc9v3boFX19fuQ1wJCksLIS6ujr8/PygpaUFHo+H5ORkmTLAPB4PaWlp8PDwgLu7O9ra2nD9+nXi4Qj0L6EEBQVBR0cH3d3daGpqwtWrV1XmBnXv3j1ijqLiV6dPnwafzwfQ784f7E5dsWIF8W8LCwuw2Ww0Nzdj3759APrTIjU0NEgS3kB/0bW0tDQFz2jkyMvLA51Ox+TJk8FgMFBbW4tDhw4RwYf6+vpi19vatWuJf1tZWcHT0xNNTU347rvvAPQ/CCMiImBsbIyuri4UFxfjzJkzKpU5I+LGjRvQ19fH888/DyMjIzx69Ag7duwgXmaMjIykZmJJw9jYGF988QXxffbs2Zg9ezby8/OxZcsWuY5/tJkxYwa6urpw8OBBtLW1wcHBAe+99x7Jo9HQ0EDyqjY1NWHTpk3E99jYWMTGxsLFxQX//ve/ie35+fng8Xgy3fPKiDw9zJISFCR57bu6upCVlYUNGzaQtkdFReH69esS93327Fn4+/vjyy+/xJ9//gk9PT3MmTMHW7ZsIf3/ypsxLX1+7Nix0R6CUjP4rYxi6IgMIorhMZSKlhSSUaX4g5FmJDJMvL295bavefPmicUZfvbZZySjDeivdWRtbU14fkR8/vnn+P333yVeb9HR0bhy5QqmT5+OTz/9FPX19Vi3bh0iIiJw4MABuc1hMGNaUIyCgoKCgmIsIc+YCkkJCoO9FLL+dl9fn9TxCIVCqKmp4dChQ4S385tvvsGCBQvw008/KcxbQRkVFBQUFBQUo4CkpQ5JMJlMqKuri6VC19bWkuJYBmJpaQlra2vS8imbzSZii5ycnJ5u8FIY00aFquk8jDQDM1Ionoxp06aN9hCUGlllnilkM9SCgRTijMTyx2hk7WlpacHPzw8JCQl47rnniO0JCQmYO3euxD6hoaE4ceIEWltbiWdpUVERaDQaEYisCJQ/p5GCgoKCgmKEGK0y3evXr8e+fftw4MABFBQU4N1330V5eTkRuL1x40ZSAPySJUtgamqKlStXIj8/H1evXsUHH3yAVatWKTRQUyHS55IO1u7du0lR62ORvr4+xMXF4caNG2hvb4etrS3mz5//WHXHO3fuIDY2FvX19WAymZgxYwYpL7u3txdxcXG4desWUVgmICAAkZGRKlGrAujXU4iKioKhoSGqqqpw/PhxqXUqJkyYgOeffx4WFhbQ0tJCQ0MDrl69SkrD9fHxwYwZM2BmZgZ1dXXU1tYiISFBpd+A3dzc4ODgAE1NTTQ0NBDniyysra3h7u4OBoOB1tZW5ObmkiTnJ0yYgAkTJhDFyZqbm5Gfn69SFSVnzpyJBQsWwMTEBGVlZdizZ8+QanJwOBx8+eWXKC0tJQVHqqurY9GiRZg+fTpMTU1RUVGBAwcOSKx9oew4OzvDzc0Nurq6aGpqws2bN1FbWyu1vbm5Ofz9/WFkZIT29nbk5eWRRNkMDQ3h5eUFU1NTMBgMZGZmyqXmCgWwaNEi8Hg8bN68GdXV1XB3d8fFixeJGiPV1dUkxXAGg4GEhAS89dZb8Pf3h6mpKRYuXIitW7cqdJzDNipE0uf79u1DeXm5WPGNX3/9FdHR0cR3abX4xxKXL19GcnIyFi9eDDMzMyQkJODnn3/Ghg0bxKpmiigtLcWff/6J6OhoeHh4ICcnB3/88Qfeeust4j/78uXLSEtLw+LFi2FhYYFHjx7h6NGj0NXVxaRJk0ZyigrB398fCxcuxOHDh/HgwQNMmjQJb731FjZt2iSximNXVxeuXLmCiooKdHV1wdHREUuXLkVXVxdRLr2trQ0XL14El8tFT08PPD098dJLL4HP5yM/P3+kp6hwXF1d4ezsjIyMDPD5fHA4HEyePBkxMTFSi9WYmpoiODiYMCSsra0RHByMy5cvEynN7e3tuHv3LlHozc7ODqGhoUhISFCJEvGTJk3CmjVr8NNPPyE/Px/PPvsstmzZgjVr1sgsZkWn0/H+++8jOztbrH7OSy+9hKlTp+KHH34gaod88skneO+998TE35QZW1tb+Pv7IyMjA7W1tXB2dkZERATOnj0rpuUD9D+kpk2bhuLiYqSkpMDc3ByBgYHo7OwkHmYaGhpobW1FeXk5SQZBlRjNF8F169Zh3bp1En+TpBbu6uqKhIQEBY+KjMKkz42MjGBhYUF8FOlukQd9fX24evUqpk+fDk9PT1haWmLJkiXo6urCrVu3pPa7evUqnJ2dMX36dLBYLEyfPh1OTk6kwlZlZWVwc3MDh8OBiYkJvLy84OzsjEePHo3E1BTO9OnTkZqaitTUVHC5XBw/fhyNjY2YPHmyxPaPHj1CZmYmqqurwePxkJ6ejvz8fDg6OhJtioqKkJ2dDS6Xi/r6ely+fBmVlZWkNqqEk5MTCgoKUFlZiZaWFmRkZEBdXV2msqiTkxNqampQWFgIPp+PwsJC1NTUkBQ6q6urweVy0draSngyenp6ZCrvKhPPPfcc4uPjERcXh0ePHmHPnj2oq6vDzJkzZfZ7++23kZSUhIKCArHfIiIicOzYMWRmZoLL5eLChQvIysrC888/r6hpjAocDgf379/H/fv30dLSgps3b6K9vV2qPLmTkxPa2tpw8+ZNtLS04P79+3jw4AE4HA7Rhsfj4datWygtLVVZwTZKpVQ2CpE+B/pzrZlMJgICAvDzzz+P+ROsoaEBfD6fdEFpaGhgwoQJKC0tldqvtLRU7CJ0dXUl9bG3t0dxcTHhVqysrERJSQnYbLZc5zAaiB58g70H+fn5MsuyD8TGxgYODg4yA0tdXV3BYrFIrlZVQU9PD7q6uqQlCaFQiLq6OpmFm0xNTcUKqNXU1Eg1GNTU1GBjYwMNDQ25qlCOFhoaGnBychIz+m/dukV60A0mMjISlpaWOHTokMTfNTU10dXVRdrW1dVFkghXdmg0GkxMTFBdXU3aXlVVRVS7HYyZmRlRSXNge1NTU5V9QFI8OXKXPgeALVu2YNq0adDV1cWlS5fw3nvvob6+Hv/5z3+k7nO0pc9FrmB9fX3Sdn19fZlCTHw+XyxLhcFgkFzLEREREAgE2LFjB6GgOGPGDKWtPDoQBoMBdXV1MVc6n89/rCjRF198QfQ/d+6cWBlpHR0d7NixA5qamhAKhTh8+LDEN0tlR7S0NrjiZUdHh5hQ2+B+kvoMXqozNDREREQE1NXV0dPTg9TUVJVY+hBJnw++PpuamqQqYlpZWWHlypX44IMPpL7oiLwSubm5qK6uhre3N4KCglSq1LS2tjZoNNqQzh8Rurq6EtvTaDTo6OiQNJ9UGVWJg1MUcpc+B0AyHkTVxzZv3izTqJAkfb548WIsXbr0SYc4JLKysnDixAniu6ieuqTiIo/jcdLB2dnZuHXrFpYtWwYWi4Wqqir89ddfMDQ0REBAwHCnoPTs3LkT2tracHBwwHPPPYe6ujpkZmYSv3d2dmLr1q3Q1taGq6srXnjhBdTX1yt9quz48eNJ680pKSkS20mT8B7IUM5PPp+PhIQEaGpqYty4cQgMDMSVK1dUwrAAxI+BtONGo9Hw73//GwcPHiQFsw5mz549ePvtt/HLL78A6F9CSkhIQGRkpHwHPgaQV0HlMVyYWe5QXhnZyF36XNIbQlBQEFpaWlBTUyO1UIekymKXL19+0uENGTc3N9J6dW9vLwBx2d/W1lYx78VA9PX1xUo6D+5z7tw5REREwMfHB0D/21JjYyMuXbqk9EZFa2srent7xbwS+vr6j31oiVzwVVVVMDAwwKxZs0hGRV9fHxFsV1FRAUtLS0RHRyu9UVFVVUXShhG9+Qz2PGhra4t57wbS0dEhFqskyXshFAqJQM3GxkaYmJjAyclJ6bMZRNLnIrEkEYaGhoTS8EB0dXXh7OyMCRMmEMFuIrXg8+fP4+OPP8adO3fQ3NyMLVu2QFNTEwYGBuDxeFi1apXKaPUA/Qa7UCgc0vkjQiAQiHkxdHR0IBQKZZ6nFP8s5C59Lqlu/e3bt6GjoyNTpXSkpc91dHRIF0hfXx/09fVRVFREFAbp6enBgwcPMGvWLKn7sbOzw71790hBiffu3SOpwXV1dYlZt0N5C1UGent7UV5eDjabjezsbGI7m80mVEqHiobG40/HobQZ6/T09BAPeRECgQAsFot4GNJoNJiZmeHu3btS98Pj8cBisUhGFovFGlK8hCq4cHt6elBcXAwfHx+SqJKvr69E0bn29naxtPZZs2bBy8sL27ZtE0uz7e7uBo/Hg7q6OkJDQ1VGVRjoNzQbGhpgaWlJChi3tLSUqhlUV1cnVjTJ0tISPB5PJe5lQ4XyVMhG7tLntra24HK5CA4Ohq6uLpKSkvDxxx/jtddeG1I50tFCTU0NkyZNQmJiIphMJszMzJCYmAgtLS1S7MPhw4eJt2oACA8Px08//YRLly7B3d0dubm5KCoqwltvvUX0cXNzQ2JiIoyNjWFhYYGKigokJycjMDBwxOepCBITE7Fy5UqUlZXh4cOHCA8Ph4mJCXETnjdvHoyMjIgsoSlTpqChoYG4iTs6OiIqKgpJSUnEPqOjo1FWVoa6ujqoq6vDw8MDwcHBUoPrlJ3i4mKw2Wy0traCz+eDzWYTBpuIwMBACAQC5OTkEH2mTp0KV1dXIqWUxWKRPHweHh6orq5Ge3s7NDU1YWNjAzMzMyJ1V9k5c+YM3n//fRQXF6OgoICobXLx4kUAwMsvvwxTU1N8/fXX6OvrQ1lZGal/U1MTurq6SNtdXFxgamqKhw8fwtTUFMuWLYOamhpOnjw5onNTNPn5+QgNDQWPx0NdXR2cnZ2hp6dHGKk+Pj7Q1dUlDLbi4mK4urrCz88PxcXFMDMzg6OjI2n5jkajEc8GGo0GOp0OY2Nj9PT0qIxInyoY5IpE7tLnOTk5OHHiBNavXw+hUAgHBwds3rwZb7zxhtwGrSgiIiLQ3d2NU6dOQSAQYPz48VizZg3Jo9HY2EiyVO3t7bF8+XLExMQgNjYWpqamWLFiBVGjAuhPe4uJicGpU6fA5/NhaGiI4OBgMW+PsnLz5k3o6elh5syZRPGrH3/8kXDxGxoaklzUampqmDdvHphMJpHlcPr0adKDTltbG4sXL4axsTG6u7vB5XJx4MAB3Lx5c8TnNxIUFhZCXV0dvr6+0NLSAo/HQ3JyMqlGBZ1OJ70R8ng83LhxA+7u7nBzc0NbWxvS0tJISyva2tqYOHEidHR00N3djebmZly7dk1lXPlXr16Fvr4+lixZAhMTE5SWluLTTz8lMq1MTExgbm7+RPvU0tLCSy+9BAsLCwgEAmRmZmLnzp1oa2tTxBRGjbKyMmhra8PT05MofnX58mVinrq6uqRAYVFAvr+/P1xcXIhjM9Dw1dXVJXl23dzc4ObmBi6XO+L1EhQF5amQzZiWPr9w4cJoD0GpOXv27GgPQWmhtD+ejl9//XW0h6C0LFmyZLSHoLQsX75c4X9DngULVWlJTYTyL1BTUFBQUFCMENTyh2woo4KCgoKCgmKIUMsfshnTRoWsSpYUj4dy4Q+fr7/+erSHoNS89957oz0EpUUVq8ZS/HMYtlHB5XKxbds2XLhwAZWVlTA3N4e3tzfeeecdTJs2Db/88gsOHz6MW7dugc/no7GxUWZK6VjA3d0dPj4+oNPpaGhoQEpKilgZ24FYWVkhNDQUJiYmaGtrw+3bt0nqiPPmzSPV8xBRWlqqkvEilMrm8Jg/fz6WLVsGU1NTlJSU4NtvvyWl5w7E19cXu3fvFtu+cOFCIoNh165dEsWcUlNTxWrBqArUuTc8/Pz8EBQUBAaDgbq6OiQkJEjVJBIJillaWsLExASZmZkSgy+1tbUxZcoUuLq6QkdHB01NTUhMTFQZMTbKUyGbYRkVpaWlCA0NhZGREb788kt4enqiu7sbcXFxeOONN1BYWIj29nZER0cjOjoaGzdulPe45Y6joyPCwsKQnJwMLpcLNzc3zJ49G4cPHxarKQD0F3eaNWsW8vPzkZiYCAsLC0yePBkCgQAPHz4EAMTExJBK++ro6GDRokUqc3ENhFLZHB7Tp0/Hu+++iy+//BJ3797Fc889h2+//RYvvviizAyNBQsWkLIRBhZ72rBhA6meh6GhIQ4ePEiSllclqHNveLDZbERGRiI2NhaPHj2Cr68vXnzxRezZs0fi/NTV1dHe3o7U1FSp6fA0Gg1LlixBe3s7Tp06RRQTHKylosxQMRWyGZZRsW7dOqipqSEjI4OUcuTm5oZVq1YBAN555x0AwJUrV556kCOBt7c3CgoKCG2JlJQU2NjYwN3dHTdu3BBr7+7uDj6fT+RoNzY2wtzcHD4+PoRRMbjKnKOjI3p6enD//n0Fz2bkGaiyCQAZGRmYM2cOxo8fTxwPSX1EKptAf1qlmZkZnJ2diWM+2FOUm5uLCRMmwNTUVCVu7IsXL8bZs2eJTJ1vv/0WEydOxPz587Fr1y6p/RobGyUauwDEjktUVBQ6OztV1qigzr3hMXHiRGRnZxNesYSEBDg4OMDX11fifbu5uZnwTHh5eUncp7e3N3R1dfH7778T2iqqcKwohs4Tm1wNDQ2IjY3FG2+8IVHsaKwvcUhCVL1wYL410C/RbWFhIbGPhYWFmJuwvLwcZmZmUi1ZDoeD4uJiqW9Pygqlsjk8NDQ04OrqivT0dNL2jIwMeHh4yOz7559/4sKFC/jxxx8lLnUMZPbs2UhISJBaflmZoc694UGj0WBpaYmSkhLS9ocPH4pVzXwSnJycUFFRgejoaPzrX//Cq6++ipCQEJVaMqCkz2XzxJ6K+/fvo6+vD66urooYz6igo6MDGo0mprInEAhAp9Ml9qHT6RLbq6urQ0dHB+3t7aTfzM3NYWpqqlA9k9GCUtkcHkZGRtDQ0CAVqwL6i1oFBQVJ7FNfX4/PP/8chYWF0NTUxIwZM/Djjz/i9ddflxiHweFw4OjoiG3btiliCqMOde4NDzqdDhqNJubtamtrE1NdfhKMjIxgZ2eH3NxcHDt2DCYmJnjmmWdAo9GkCucpG9Tyh2ye2KgQ1cqSt5U12tLnwJMr7T1Jew6HAx6PR1T6U2YolU35MlSVTaDfGzbQo5abmwsWi4WlS5dKNCrmzJmD+/fvIz8/X65jHi2oc0+xPK0mkZqaGtra2nDx4kX09fWBy+WCwWAgODhYZYwKCtk8sVHh5OQENTU1FBQUYN68eXIbiCTp8xkzZmDmzJly+xvS6OjogFAoFPNK6OrqinkcRLS3t0ts39vbK/YGpKGhAUdHR2RkZMh34KMEpbIpH5qamtDT0yPmcjcxMRHzXsgiNzcX0dHRYtu1tbURGRlJSHirAtS5Jx/a29shFArFvBJ0Ov2pypG3trZCKBSKlZNnMBig0WhEnIUyo6rLFvLiif04InfWTz/9JPHkkyQ5PBQ2btyI5uZm0mektDFEa7A2Njak7TY2NlLTx7hcrlj78ePHo66uTuzCcXR0hLq6Ou7duyffgY8SIpVN0aelpYVQ2RQhilOpr6+Xuh+RyuZA/mkqm4WFhWKR9IGBgYRo2FBwcXGReMymT58OTU1NxMTEPPVYxwrUuScfhEIhqqurYW9vT9pub28vVaV0KFRUVMDY2Ji0zcTEBHw+XyUMCoCKqXgcw7o6du3ahd7eXgQGBuLUqVOEQuAPP/yA4OBgAP0P3ezsbCLTIScnB9nZ2VLfwLS1tWFgYED6jOTSR3Z2NjgcDthsNoyNjREaGgp9fX2i7kRQUBCpmFRubi709fURGhoKY2NjsNlssNls3L59W2zfbDYbJSUlMt+clB2Ryqa1tTUMDAwQEBAgUWVzYABicXExWCwWXF1doa+vD1dXVzEpbw8PDzCZTNDpdBgaGsLd3V1iUK2ycuTIEcydOxezZ8+GnZ0d3nnnHbBYLJw+fRpAf6bVZ599RrR/8cUXMWnSJNjY2MDe3h7r1q1DREQETpw4IbbvOXPm4OrVqyrrqhdBnXvDIz09Hd7e3vDy8oKpqSkhFnnr1i0A/WrCs2fPJvVhsVhgsVjQ0tICnU4Hi8UiBcRmZWVBV1cXUVFRMDExgaOjI0JCQpTeszMQGo0mt48qMqyUUnt7e9y6dQvbtm3De++9h+rqapiZmcHPz48ozPPzzz+TljNEIiy//vorXn755acfuZy5f/8+dHR04O/vDz09PfB4PJw7d46Q66XT6dDX1yfa8/l8nD9/HmFhYfDw8EBbWxuuXbsmlsJmaGgIKysr/P333yM6n5GGUtkcHomJiTA0NMSqVavAZDLx8OFDvPvuu4SHzNTUlPRGraGhgbfffhtmZmbo7OxESUkJ3n33XUKeWoSNjQ28vb3x1ltvjeh8RgPq3BseBQUFoNPpCAsLI4pfHT16lDBCGQyGmCL1K6+8Qvzb0tIS7u7uaGpqwk8//QSg/7545MgRREZG4tVXXwWfz0dmZibS0tJGbmIUo8qYVikVnagUw8PMzGy0h6C0UGW6nw6qTPfwocp0D5+PP/5Y4X9joLT703L+/Hm57WusMKa1PygoKCgoKMYSqrpsIS+oo0NBQUFBQUEhF8a0p2K4mSQU/QyO7KYYOk8TAU/RX9KZYnhQy5ZjG1XN2pAXY9qooKCgoKCgGEtQyx+yUYj0uY+PDz777DPEx8fj0aNHYDKZmDdvHrZs2SIWTTyWoGSAh09fXx/i4uKQlpYGgUCA8ePHY/78+bC0tJTZ786dO4iJiUF9fT2YTCaeffZZeHp6Er93dHQgJiYGOTk5aG1thbW1NZ577jmMHz9e0VMaMV566SWsXbsW5ubmKCoqwmeffSa1UNq3336LhQsXim2/d+8eIiIiiO/PPvssPvjgA9ja2qKsrAw7duxAbGyswuYwmrDZbHh5eUFXVxeNjY24ceOGTHlyCwsLBAUFwdjYmFAiFQkJDsbBwQHTpk1DaWmpxOtb2eFwOPD09ASdTkdjYyPS0tJkHjtLS0vSsbtz5w7p2Dk7O2PKlCli/fbv34/e3l5FTIFijKEQ6fOTJ0+iqqoKX331FTgcDsrKyrB27VpUVVXh5MmT8p6DXKBkgJ+Oy5cv48qVK1iyZAnMzMyQkJCAn3/+GRs3bhTTUxBRWlqKP/74AzNmzICHhwdycnLw+++/4+2334atrS0A4NixY6iursbSpUthYGCArKws7N69G//+97+VUrxuMHPmzMGmTZvw0UcfITMzE8uXL8fBgwcxZcoUVFVVibX/9NNP8fnnnxPfNTQ0kJCQQIoiF6V279y5EzExMZgxYwZ+/vlnPPfccxLrqCgzDg4OCA4ORmpqKmpqauDq6oro6GicOHFCYnE+fX19REdHo7CwEFeuXAGLxUJoaCgEAgFKS0tJbRkMBiZOnCimVqoqiI5dSkoKampqwGazMWPGDBw/fvyxxy4pKQksFgthYWHo6OggCZN1dXXh2LFjpL6qZFBQyx+yGZYfZ6D0+YIFC+Ds7Aw3NzesX7+eyP0+deoUZs+ejQkTJiAiIgLbtm3DuXPnxqxC50AZYB6Ph4SEBLS0tMDX11die5EMcE5OjtSiViIZ4BMnTqCiogItLS2oqKhQCf2PgfT19SE5ORmRkZHw9PSEpaUllixZgq6uLqKQjiSSk5Ph7OyM6dOng8ViYfr06XB2dkZycjKA/pvT3bt3ifPIzMwM0dHRMDExEavLoKy8+uqrOHr0KI4cOYL79+/js88+Q1VVFVasWCGxPZ/PR11dHfHx9PSEoaEh6Sb+yiuv4OrVq/jxxx/x4MED/Pjjj0hJSSHVGFAVPDw8cO/ePdy7dw9NTU24ceMGWltbweFwJLZns9lobW3FjRs30NTUhHv37qGoqIjkHQP6HxxTp07FrVu3iFo1qoanpyfp2KWlpQ3p2KWlpRHH7t69e2LHrq+vDwKBgPRRJaiKmrIZMenz5uZmGBgYQENj7IVxUDLATwePxwOfz4eLiwuxTaR3MviYDqS0tJTUB+gvOS16YxQKhRAKhWKVVTU1NcWKjCkjmpqa8PT0JIwoEcnJyfD39x/SPhYvXoxr166hsrKS2Obn54erV68Oe5/KAo1GA5PJJM0dACorK8VKcIswNzcXa19RUQEzMzPSdenj44OOjg6VKa0/GNGxGxyQXFFRIfXYsVgsie0HHztNTU0sXrwYS5YswTPPPCNVTp5CNXlio2I40uc8Hg9btmzBmjVrnvTPjQiKlAFms9lQU1PDsWPHkJqaiokTJyI0NPRphzymEL3JDaw4CvS7j2W95fH5fLE++vr6xHKTjo4O7OzsEB8fj+bmZgiFQty8eRPl5eUqUXraxMQEGhoaYhoV9fX1MDc3f2x/c3NzTJ06FUeOHCFtNzMzQ11dHWlbXV2dymUV6OjogEajiYn+CQQCMbEwEXQ6XezNub29HTQajVimY7FYcHFxETPMVAnRsRt8LAQCgZhQoghdXV2J7Qceu6amJly5cgVxcXG4fPkyent7MXfuXBgYGChmIqMA5amQjcKlz1taWjBz5kxwOByShsFgJEmf9/T0jKpng5IBlkxWVhaOHz9OfH/11Veltn3ceSLp94Hbli5diqNHj2LTpk2g0WgYN24cfH19VSrl80mkzweycOFCtLS0SAzAHO4+/wlIOjYiNDU1MXXqVFy7dk2ltXpEyDoWw6G2tpa0vMvlcvH888/D3d1dZZYsVdUYkBcKlT7n8/mIjo4Gg8HAmTNnZAqESZI+nzp1KknES1FQMsBPhpubG95//33iuyhOhs/nk7J7WltbZXp6BnolRAz2XjCZTLz55pvo7OxER0cHDA0N8fvvv8PExERe0xk1Ghoa0NPTI+ZBMDU1FfM0SOLFF1/EqVOn0N3dTdpeV1cn5ulgMpkyVTuVkY6ODgiFQrE3a0lv1CLa29slthcKhejo6ICxsTH09fXxzDPPEL+LHiKrV6/G8ePHVSLGQtqx09HREfP8iJDkARp47KRRV1encp4KCukoTPq8paUFUVFR0NLSwtmzZ6VmAIiQJH0+efLkJx3esKBkgJ8MHR0dmJmZER8LCwvo6+uT1p97enpw//59mQW47OzsSKqQQH9qpJ2dnVhbbW1tGBoaor29HYWFhXB3d5fbfEaL7u5u3L17lxDbEzFp0iTcvHlTZt/g4GDY29uLLX0A/Z6k8PDwJ96nsiEUClFfXw9ra2vSdmtra6miX7W1tRLb19XVoa+vD83NzTh58iROnz5NfMrKylBVVYXTp08/1UvGWELasRs3bpzUY1dTUyMWYzZu3Dji2EnD1NRU5YI1KaSjEOlzPp+PqKgotLW1Yf/+/WhpaQGXywWXy5WaWiRJ+nwklz4oGeDho6amhsmTJyMxMRF3795FdXU1jhw5Ai0tLVL2zKFDh0ipj5MmTcK9e/dw6dIl1NTU4NKlSygqKiIZk4WFhSgoKACPx8O9e/fw008/wdzcHBMnThzROSqKvXv3YvHixVi0aBEcHR2xadMmWFtb488//wQAbNiwAd9//71Yv8WLF+PWrVsSAwn379+PyZMnY926dZgwYQLWrVuH8PBw7Nu3T+HzGWlycnLg4uICZ2dnGBkZEXVmRLUTAgICSHUTCgoKwGAwEBQUBCMjIzg7O8PFxQV3794F0J/62NjYSPp0dXWhu7sbjY2NSv0yMJi7d+/C1dUVLi4uMDIyQnBw8BMdOxcXF9KxAwBfX1+MGzcO+vr6MDU1xeTJk8FkMpGfnz/S01MYVEyFbBQifZ6VlYX09HQAgKOjI6lvSUmJxDfR0YaSAX46IiIi0N3djZMnT0IgEMDW1hZr164leagaGxtJF5K9vT2WL1+OmJgYxMTEwNTUFC+99BJRowLod7leuHABTU1NoNPp8PLywrPPPgt1dfURnZ+iOHv2LIyNjfHuu+/C3Nwc9+7dw/Lly4kMBRaLBSsrK1IffX19PPvss/j0008l7vPmzZtYt24dPvzwQ3zwwQcoKyvD66+/rnI1KoD+DC1tbW34+vqCTqcT2WmioGs6nU7KUuPz+YiNjUVwcDA4HA7a29uRlpYmVqPin8DDhw+ho6NDOnYxMTGkYzdw+XLgsRPJxV+/fp2U4aWtrY3w8HDQ6XR0dXWhvr4eZ8+eHdJynrKgqsaAvBjT0ufbtm0b7SEoNT4+PqM9BKVFVvApxePZtGnTaA9BaRnDt+Qxz2uvvabwv/Hiiy/KbV9Hjx59ova7du3Czp07UV1dDTc3N3z33XdiS52SSE1NxeTJk+Hu7o7s7OxhjnZoUEXMKSgoKCgohshoLX8cO3YM77zzDj7++GPcvn0b4eHhmDFjBsrLy2X2a25uxooVK0Yk6QGgjAoKCgoKCoohQ6PR5PZ5Er755husXr0ar7zyCthsNr777jvY2Nhg9+7dMvutWbMGS5YsQXBw8NNMe8iMvfKWA3icGBUFhaJQtUJRI83gNFeKoTM4hoZCdZFUn0lbWxva2tqkbV1dXcjKysKGDRtI26OiomTW//j111/x4MEDHDx4EFu3bpXfwGVAeSooKCgoKCiGiDyXP7Zv3w5DQ0PSZ/v27WJ/s76+Hr29vWIl1FksllRV2eLiYmzYsAGHDh0a0UxKhUifT5s2DWvWrEFiYiKqqqrAYDAQEhKCHTt2PFF575HG1dUVHh4e0NXVRVNTE9LT06XmbAP9EsqBgYEwMjKCQCDA3bt3SSl+tra28PLygr6+Pmg0GlpaWpCbm6tysucAJX3+NCxcuBAvvfQSmEwmHjx4gJ07d8rM1NDU1MSaNWvw7LPPgslkoqamBvv27cPff/9NtJk2bRrWrVsHGxsbPHr0CD/++COSkpJGYjojjpubG3x8fIgMhtTUVJnKolZWVggJCYGJiQna2tqQnZ2NvLw84ve5c+eK1W8AgLKyMly4cEEhcxgt+vr6kJiYiPT0dOK6nTt3LiwsLGT2y8nJQXx8PHg8HkxNTfHMM8+I1Y5pbm5GTEwM7t27h+7ubjCZTCxYsOCp9JTGAvLM/ti4cSPWr19P2jbYSyHrb/f19UkcT29vL5YsWYL//ve/cHZ2ls9gh4hCpM8LCwvh5+eHpUuXYvz48WhoaMCmTZsQFRWFkpKSMZkOaG9vj4kTJyItLY2QUI6KipJa8IbBYCAyMhJFRUVITk4Gi8VCcHAwOjo6UFZWBqDftXXnzh00NTVBKBTCxsYG4eHh6OjoEBM1UnYo6fPhERUVhQ8++ACff/45srOzsWDBAvz00094/vnnpb6BfPnllzA1NcV///tfPHr0CCYmJqRrytPTEzt27MCuXbtw+fJlRERE4Msvv8TKlSuRm5s7UlMbERwdHREWFoarV6+Cy+WCw+Fg1qxZOHLkiJiWD9Cfjjtz5kzk5+fj0qVLsLCwwKRJkyAQCAiRutjYWNJ6t46ODhYtWoT79++P2LxGiuTkZFy7dg0LFy4Ek8nEpUuXsG/fPnzwwQdSH25lZWU4fPgwoqKi4Obmhry8PBw6dAivv/46Yey3t7dj9+7dcHBwwKpVq6Cnp4eGhgapmiz/VCQtdUiCyWRCXV1d7J5QW1srUQCOz+fj5s2buH37Nt58800AIKo7a2hoID4+HhEREfKZxCAUIn0O9Kf2TJo0CXZ2dvD19cXWrVvx6NGjMZsP7u7ujqKiIhQVFaG5uRnp6eloa2uT6llxdXVFW1sb0tPT0dzcjKKiIhQXF8PDw4Now+VyUVZWhubmZvD5fOTn56OhoUGqCqCyQkmfD5/ly5fjzJkzOHPmDEpKSrBz505wuVy88MILEtuHhITA398fb775JtLT01FVVYXc3FzcuXOHaLN06VLcuHEDBw4cQGlpKQ4cOICMjAwsXbp0pKY1Ynh5eaGgoAAFBQVobGxEamoqWltbpVZcdXNzQ2trK1JTU9HY2IiCggIUFhbC29ubaNPZ2UmS7baxsUFPT4/KeRj7+vqQkpKCiIgIuLu7w8LCAosWLUJ3d7dMT1lKSgocHR0xdepUQtTO0dGRpGeUnJwMQ0NDLFy4EDY2NkTxP1VQLB2N7A8tLS34+fkhISGBtD0hIQEhISFi7Q0MDJCTk4Ps7Gzis3btWri4uCA7O1uhxQNHRPq8ra0Nv/76K+zt7WFjYzOsgSoSGo0GU1NTVFVVkbaLlnUkIUlCubKyEkwmU+rJYmlpCUNDQ6lvoMoKJX0+PDQ0NMBms8WKod24cQNeXl4S+0yZMgV5eXl4+eWXER8fj7///hvvvvsu6W3H09OTMO5FpKWlSd2nskKj0WBmZoZHjx6Rtj969Eiq4W5hYSHWvry8HGZmZlKj8dlsNoqLiwmNG1WhoaEBfD4fTk5OxDYNDQ04ODgQ3lZJlJWVibnUnZ2dSX3y8/Mxbtw4HDx4EJs3b8b3339PFERUdkYrpXT9+vXYt28fDhw4gIKCArz77rsoLy/H2rVrAfQvpaxYsQJA/7Xh7u5O+pibm0NHRwfu7u4Sn93y4omXP55E+nzXrl348MMPiTf+hIQEaGlpDWugikRbW1vuMsCi3zQ1NfHiiy9CXV0dQqEQaWlpYsaLsiNL+ryxsVFmv6FKn7NYLOjr6+PWrVsoLy8nlUNXVoyNjaGhoYGGhgbSdh6PJ3V+1tbW8PHxQVdXF9avXw8jIyN89NFHMDQ0JApOMZlM8Hi8Ie9TWZEm393e3i715YVOp0uUSldXV5copmVubg5TU1OVjEcZ7nUrSSiQwWCQhNYaGhpw48YNhIeHY+rUqXj06BHOnj0LDQ0N+Pn5yXEWI89oVdRctGgReDweNm/ejOrqari7u+PixYvEUnF1dfVja1aMBAqVPl+6dCkiIyNRXV2Nr776CgsXLkRqaqrENXZJqTXd3d0ylU3ljSLkoru7u/HXX39BU1MTVlZWCAwMBJ/PV2pvBSV9Ll+e5Lyj0Wjo6+vDRx99RMQMfPXVV/jqq6+wfft24hr6J0mfy0u+W9LxYbPZ4PF4JDlvZeX27ds4ffo08X3lypUS20kL/hvI467bvr4+WFtbIzo6GsD/ibzduHFD6Y2K0WTdunVYt26dxN9+++03mX03bdo0IpVuFSp9LkqRcXJyQlBQEIyNjXHmzBksXrxYrK0k6fM5c+Zg7ty5TzrEJ6azs1OqDLA0db0nkQEWWfANDQ0wNDSEp6enUhsVlPS5fGhsbERPT4/YOrOJiYmYp0FEfX09amtrSUGIJSUloNFoYLFYKC8vJzJphrpPZUWW9Lk0+W5p0ue9vb1iLzWiJbzMzEz5DnyU4HA4JA/OwOt2oDR5W1ubzOt2sFcCEL/W9fX1xZagzM3NVSJQmNL+kI3CpM8l0dfXJ3bhipAkff7ss88+6fCGhVAoBI/HEys6Y2VlJfUNpba2VmL7+vp6mW+EampqYzL75UmgpM/lQ09PDwoKCsQq3U2cOJEUeDmQ7OxsmJmZkQxaW1tb9Pb2EunPd+/eRVBQEKlfUFCQ1H0qK0KhEHV1dWJLHbLku7lcrlhKo42NDerq6sQUSCdMmAB1dXWJSrDKiLa2NphMJvERLSkWFxcTbXp6evDw4UOSqN9gbG1tSX0AoKioiNTHzs5OTESsvr5eJTK2KJVS2ShE+vzhw4fYvn07srKyUF5ejrS0NCxcuBC6urpSDQVJ0ucjufSRm5sLZ2dnODk5wdDQEIGBgWAwGCgsLAQA+Pn5YdKkSUT7wsJCMBgMBAYGEt4YZ2dn5OTkEG08PT1hZWUFfX19GBoaws3NDY6OjioXRa6mRkmfD5c///wTzz33HObOnQt7e3u8//77sLS0xMmTJwEAb731FrZs2UK0v3jxIpqbm7F582Y4ODjA19cX7777Lv7++2/CYD98+DCCgoLw8ssvw87ODi+//DImTpyIQ4cOjcocFcmdO3fAZrPh6uoKY2NjhIaGQl9fn3gjDgoKImke5OXlQV9fHyEhITA2NoarqyvYbLZEkSU2m42SkhKpL0LKjpqaGsLCwpCUlITc3FxwuVycOHECmpqaJDHCY8eOISYmhvgeGhqK4uJiXLlyBbW1tbhy5Qru37+PsLAwok1YWBjKy8tx+fJl1NfX4/bt20hPT5eYqUChWihE+lxHRwfXrl3Dd999h8bGRrBYLEyaNAnXr1+Xmk0x2pSUlEBbWxve3t6g0+lobGxEfHw84Y0ZLKHc2tqKhIQEBAYGgs1mo729HTdu3CBFQGtoaCA4OBh6enro7e1FU1MTkpOTZWZEKCuU9PnwiI+Ph5GREdasWQMmk4n79+/jzTffJIo3mZmZkQqICQQCrF27lqiU19zcjPj4ePz0009Emzt37mDDhg1444038MYbb+DRo0f497//rRKu58Hcv38f2tra8Pf3h56eHng8Hs6fPy9TvvvChQsIDQ2Fh4cH2trakJKSIpZNZGhoCCsrK5w9e3ZE5zPSTJ48mYj7EqXPvvLKK6RsoqamJtJ1a2dnh8WLFyM+Ph7x8fEwMTEhahKJsLGxwYoVKxAbG4tLly7B2NgYs2fPVgnlZFX1MMiLMS19fuDAgdEeglLzuKp4FNL56KOPRnsISs1ISFCrKpT2x/B5XJyfPHjllVfktq99+/bJbV9jBUr7g4KCgoKCgkIujGmVUgoKCgoKirEEtfwhmzFtVKiaPsZIIy0dluLx3Lx5c7SHoNT88ccfoz0EpWUMr0hTgDIqHge1/EFBQUFBQUEhFxQmfS6ir68Pzz77LGJjY3HmzJkRCaQZLn5+fggODoa+vj7q6uoQFxcnphMgQqRSamlpCRMTE2RkZCA+Pp7UZvny5RJrLhQXF+Po0aOKmMKo4e7uTpKfTklJeaz8dGhoKCE/ffv2bZL89Lx58yTKT5eWlqqc/DTQf53s2rULJ06cQEtLCzw9PfGf//wHjo6OMvu1tLTg+++/R2JiIlpaWjBu3Dh88MEHRPrzTz/9hF27dpH6mJqa4urVqwqby0jj6uoKDw8P6OrqoqmpCenp6VLrVAD9AcyBgYEwMjKCQCDA3bt3SbUobG1t4eXlBX19fdBoNLS0tCA3N1flUsGB/5M+z8jIILI/5s2b91jRw5ycHCQkJBDS51FRUVKlz4uKigjp8/nz51PS5yqOwqTPRXz33XdK8Z/A4XDwzDPP4OLFi6ioqICvry+WLFmC3bt3i1V9BAB1dXUiHU1azYQTJ06QUh/pdDpee+015OfnK2weo4FIfjo5ORlcLhdubm6YPXs2Dh8+LFV+etasWcjPz0diYiIsLCwwefJkkvx0TEwM6diJ5KdV8cYOAPv378fvv/+Obdu2wc7ODnv27MErr7yCCxcuSBX/6erqwiuvvAJTU1N8++23sLCwQHV1tVh7R0dHUpS5qqTjAv1pyRMnTkRaWhpqamrg6uqKqKgonD59WmJxPtHLQFFREZKTk8FisRAcHIyOjg4iHbyzsxN37txBU1MThEIhbGxsEB4ejo6ODpVbkk1OTkZKSgpeeOEFMJlMXL58Gfv27cP7778vU/r8yJEjiIyMJKTPDx8+jLVr14pJn0+YMAErV65UKelzZXiejSbDMioGSp8PvIG5ublh1apVxPc7d+7gm2++QWZmJinXfiwSFBSE27dvE0Vw4uPjMWHCBPj7++Py5cti7UX1AQBIVX8cXK7bzc0N3d3dKCgokO/gRxlvb29Cfhrol0a2sbGBu7u7mFom0O/V4PP5hFRyY2MjzM3N4ePjQxgVgwsOOTo6ElU6VY2+vj78+eefeO211xAZGQkA+PzzzzFp0iRcuHABCxculNjvzJkzaGlpwaFDh4hCcZLSEdXV1WFmZqa4CYwi7u7uKCoqIiqzpqenw9raGq6ursjKyhJr7+rqira2NkIxs7m5GUwmEx4eHoRRMbiEfn5+PhwdHcFisVTKqOjr60NqaiqmTp1KeBkWLlyIrVu3ypTHTk1NJaTPgf7y2yUlJUhNTSWMiuTkZBgZGeGFF14g+qlCaX2AMioeh8Kkz9vb27F48WL8+OOPY75eAo1Gg6WlpVgBnAcPHsjVVefj44O8vDx0d3fLbZ+jjUh+erA63qNHj6T+vw9HfprD4aik/DQAVFRUoL6+HqGhocQ2LS0t+Pv74/bt21L7JSUlwcvLC1u3bsWkSZMwd+5c/PLLL+jt7SW1Ky8vx5QpUxAVFYX3339f6pKeskGj0WBqaiqm+itajpWEubm5mGFQWVkJJpMp9WFhaWkJQ0NDpdbrkYQ06XN7e/vHSp8P7AP0a0IN7FNQUABra2scOnQIW7Zswffff4+MjAz5T4JizKEw6fN3330XISEhQxYEk6RS2tPTAw0NxSeo0Ol00Gg0MXfp44R1ngQrKyuYm5vj3LlzctnfWEGa/LQs2Xg6nS6x/ePkpyV5jFSB+vp6ABATFpP0wBxIRUUF0tPTMWvWLOzevRtlZWXYunUrenp6CCVDT09PfP7557CzswOPx8OePXuwdOlSnD17Vul1GLS1tZ/43NPV1ZXYnkajkQQENTU18eKLL0JdXR1CoRBpaWky/y+UEdHS5GDpc319/cdKn0vqM1j6PD09HWFhYZgyZQoqKipw9uxZqKurK71KKeWpkI1CpM/Pnj2Ly5cvy3zLGowkldIpU6YgIiLiSYc4bBQpF+3t7Y3a2lqVuzGJeNLj9CTtORyOyshPA8D58+dJEsS7d+8GIH5NPU6CWigUwsTEBJs2bYK6ujrc3NxQW1uLX3/9lTAqwsPDSX28vLwQHR2Nv/76Cy+//LJ8JjTKKOK6FZWu1tTUhJWVFQIDA8Hn85XaW3H79m2cOXOG+C7t/38o0ueP6yNN+jw9PZ0yKlQchUifX758GQ8ePBB7E5o/fz7Cw8Nx5coVsT4bN27E+vXrSdu+/vrrJx3esGhvb4dQKBTzStDpdInBXk+KhoYG3NzckJyc/NT7GmvIW356cByKSH5alVynU6dOhYeHB/FdtBxWX19Pin1oaGgQ814MxMzMDBoaGqTAywkTJqC+vh5dXV3Q0tIS60On0+Hs7Cy2XKWMdHZ2Sjz3BnocBiMQCMSCBXV1dSEUCsXOPdGbd0NDAwwNDeHp6anURsVg6XPRMtlg6fPBMuaDGar0+eAlKFWRPqeQjUKkzzds2IC7d+8iOzub+ADAt99+i19//VXifiWplI7E0gfQ/8ZXXV0NBwcH0nYHBwdUVFQ89f45HA40NDRICqaqgjT5aRsbG6k3YC6XK9Z+/PjxEuWnHR0dVUp+GgD09PRga2tLfCZMmAAmk4nr168Tbbq6unDz5k2ZAkw+Pj4oLy8nHbPS0lKYmZlJNChE+3348CGYTKb8JjRKCIVC8Hg8seBUKysrqV6t2tpaie3r6+tlejfU1NSUPmtmsPS5ubk59PX1ScHPPT09KCkpeaz0+eCA6eLiYlIfW1tbYllPRF1dndIvuQGU9PnjUIj0uYWFBdzd3UkfoP/BYW9vL9cJyIsbN27Ax8cHXl5eYDKZiIyMhKGhIRFBHhERIRYfwmKxwGKxoKWlBTqdDhaLJfFm7ePjg3v37qlshcvs7GxwOByw2WyS/LSo7sRg+enc3Fzo6+sjNDQUxsbGYLPZYLPZEpfLVF1+Gui/SS1fvhx79+5FYmIiiouL8fHHH0NHRwczZ84k2m3cuBHffvst8X3RokVoamrC9u3bUVpaiuTkZOzduxeLFy8m2uzcuROZmZmoqKjA3bt38c4776C1tXVM14t5EnJzc+Hs7AwnJycYGhoiMDAQDAaDSGv38/MjanYAQGFhIRgMBgIDA2FoaAgnJyc4OzuTDH5PT09YWVlBX18fhoaGcHNzg6Ojo8qlM6upqSE0NFSi9Lm3tzfR7tixY4iNjSW+S5M+HxhoLJI+T0pKQn19PbKzs5GRkYHg4OCRnKJCoIwK2ShE+lwZyc/Ph66uLiZNmgQGg4G6ujocOXIEzc3NAPpdfgNdhABZidHKygoeHh5oamrC//73P2K7iYkJxo8fj4MHD47MREaB+/fvQ0dHhyQ/fe7cOcJFSqfTSYFdfD4f58+fR1hYGCE/fe3aNany03///feIzmc0WL16NTo7O7Flyxai+NXevXtJGVbV1dWkG5GlpSX27t2LHTt24LnnngOLxcKyZcuwevVqok1NTQ0++OADNDY2wsTEBJ6enjh8+LDKKGGWlJRAW1sb3t7eoNPpaGxsRHx8POFFpdPppGPY2tqKhIQEBAYGgs1mo729HTdu3CBlLmhoaCA4OBh6enro7e1FU1MTkpOTUVJSMuLzUzQi6fO///6bKH61evVqmdLntra2hPR5QkICTExMsGTJEjHp8+XLl6uk9DmFbMa09PmWLVtGewhKjarkhY8Ga9asGe0hKDWU9sfwMTY2Hu0hKC3PPfecwv/G22+/Lbd9/fDDD3Lb11hhTAuKUVBQUFBQjCVUddlCXlCCYhQUFBQUFBRyYUx7KlQ5OG8kUHbhntGEOveeDuptbvioSsVTVYU6t2WjMJXSKVOmiNVlWLRo0ZhW5wwMDER4eDgYDAZqa2tx8eJFqeVqORwOAgMDYWlpCXV1ddTW1uLy5cukVCtzc3NMmzYNVlZWMDY2xoULF5CWljZS0xlR+vr6kJCQgPT0dAgEAowfPx7z5s17bIn2nJwcxMXFEWqH0dHRJLXD7du3S6zuFxwcPCLrpyNFX18f9uzZg9OnT4PP58Pd3R0bNmzAhAkTpPY5e/YsqYiWiLS0NFKgXW1tLb7//ntcv34dnZ2dGD9+PD799FNwOBxFTGXEcXV1hbu7O6FSmpGRIVOllMVikVRKc3JyxFRKPT09SSqleXl5Kpf9AQAeHh7w9fUlBL+uXr0qs0CftbU1wsPDCXXhrKwsUu0JGo0Gf39/sNls6OnpobGxEdevX5dZ9lvZoIwK2ShUpfTVV1/F5s2biX5jWaHO3d0dzz77LM6dO4fy8nIEBARgxYoV+OGHH4gMkIHY2dnh/v37SEhIQEdHB3x9fbFs2TLs2bOHkPzW1NREQ0MDcnNz8eyzz470lEaUK1eu4Nq1a1i4cCHMzMxw6dIl7N27Fx988AF0dHQk9ikrK8OhQ4cI2eTc3FwcPHgQ69atIyLJ33rrLVL9AC6Xi71798LT03NE5jVS/P777zh06BA2bdoEW1tb7Nu3D6+//jrOnDkjVaUU6M9KOn36NGnbQIOipaUFK1euhL+/P/73v//BxMQEjx49EiuzrKzY29sjMDAQaWlpqK2thYuLCyIjI3HmzJnHqpRevXoV5ubmUlVKm5ubCZXSsLAwCAQClaqI6+TkhEmTJuHKlSuoqqqCu7s75syZg4MHD0pUFzYwMMCcOXOQm5uLuLg4WFlZYcqUKRAIBITBFRQUBFdXV1y6dAmNjY2wtbXFzJkzceLECdTV1Y30FBUCZVTIRqEqpXQ6fcyLiYkIDQ1FVlYWUZfi4sWLcHR0RGBgIBISEsTaX7x4kfQ9ISEBrq6ucHV1JYyKyspKQrwoKipKwTMYPfr6+pCSkoKIiAiiUuSiRYuwefNmZGdnIygoSGK/a9euwcnJiSjFHhERgYcPH+LatWtYunQpAIhV9ktKSoKpqalYoTJlpq+vD4cPH8bq1auJeh6bN2/G9OnTERMTgwULFsjsL6uQ1W+//QYWi0Uqga8q6aRA/z2nuLgYxcXFAICMjIwhqZSKKrSKVErd3d2HpFKqSkaFSOBQVE/m2rVrhJdmYCE2ESJ14WvXrgH4P3VhX19fwqhwdXXFzZs3iWOZk5OD8ePHw8fHh1B1plBtFKZSCgCHDh0Ck8mEm5sb3n//fbHSrmMFdXV1WFlZiVWJu3//Pin3WhZqamrQ1taWWppalRGpHTo7OxPbNDQ04ODgINPtWV5eLqZ26OzsLLVPT08Pbt26hYCAAJV6W6isrER9fT3J+NLS0oKfnx/u3r0rs69AIMCzzz6L6OhovP3224SXUERycjI4HA4+/PBDTJs2DYsXLxbzbCgrIpXSwaqjVVVVUlVKzczMJKqaPk6l1MDAQOaSirJBo9Fgbm4uVq69vLwclpaWEvtYWlqKtS8rK4O5uTmhLqyuri6mJNzT06NShixV/Eo2ClMpXbp0Kezt7WFhYYHc3Fxs3LgRd+7ckfjWP9rQ6XSoq6uLufyeRKU0NDQUWlpa/8ja9iJjcfCxYjAYaGpqktnvcWqHA8nLy0NHR4fSCxINhsfjARBXKTUxMSG8XpKws7PDpk2b4OTkhNbWVhw5cgSrVq3C0aNHCWO4srISJ0+exNKlS7Fq1Srk5uZi586d0NLSwqxZsxQ3qRFApFI6WLNDkr6HCEkqpR0dHRJVShctWkSolN64cUOlvBS6urqg0WhiL0GSdHlE0Ol0ie0HqguXl5fDx8cHlZWVaG5uho2NDRwcHAijQxVQVWNAXihEpRToj6cQ4e7uDicnJ/j7++PWrVvw9fUVaz+a0udPi6enJyIiInDo0CG5CJCNdW7dukV62125ciUA+VxsshQSMzMz4eLiAkNDw6f+O6PJxYsXsW3bNuK7rAI4so6pp6cnKbbE29sbS5YswdGjR/Hhhx8C6NfH4HA4eOuttwD0u6cfPnyIEydOKL1RIUJS/T5ZNf2GUu9PVGVSU1MTlpaWCAgIUHqV0qHyJPUQB5+fV69eRUREBJYvXw6gf3mpoKAAbDZbrmOkGLsoRKVUEr6+vtDU1ERxcbFEo0KS9Hl4eDipbr+iaG9vR29vr9ibtp6ensSApYG4u7tj3rx5OHr0qEpGh0uCw+GQloVE7k5JaoeyAgIleSWkKSQ2NjaiuLgYK1aseNrhjzqTJ08mZbiIVEp5PN4TqZQOhkajwc3NjeSiZjKZYvEn9vb2uHTp0nCHP2YQqZRKUh0d7L0QIRAIJKqaPk6l1MjISOlVSgciEAgkKrzS6XSpGkVDURcWCAS4cOEC4b1oa2tDSEgIWlpaFDORUUCVvC6KQCEqpZLIy8tDd3e31PW6jRs3orm5mfQJCQl50uENi97eXlRVVcHR0ZG03dHRUaZEtKenJ+bPn48TJ06gqKhI0cMcM+jo6JDUDlksFvT19YlgOaDf0Hj48KFMtcPx48eT+gDiaociMjMzwWAwHrvspgzo6elh/PjxxMfBwQFMJhM3btwg2nR3dyMrK+uJslz6+vpw7949UuCmt7c3SktLSe3KysqkXofKxHBUSuvq6sTaW1tbP1alFFCth4lQKERtba1YzNj48eOlLrlVV1dLbF9bWyumLtzb24u2tjbQaDQ4OjqK6fooM1RMhWwUolL64MEDbN68GTdv3kRpaSkuXryIF154AT4+PiQlu4GMpvQ5AKSmpsLPzw++vr4wMzPDjBkzYGhoiMzMTABAZGQk5s+fT7QXGRQxMTF49OgRGAwGGAwGKZ1PXV0dFhYWsLCwgLq6OgwMDGBhYaFymhxqamoICwvD5cuXCbXD48ePi6kdHj16FDExMcT3sLAwFBcXIykpCbW1tUhKSkJxcTHCw8NJ+xcKhbh58yb8/PyUXn5aEmpqaliyZAkOHDhA1Dr57LPPoKOjgxkzZhDtPvnkE5JY3Z49e3D9+nVUVFTg3r17+O9//4uioiJStsjSpUuRm5uL/fv3o7y8HDExMTh9+jQWLlw4onNUFHl5eWIqpXp6eiSV0oHnU2FhIfT09BAQEEColDo5OZFioTw8PGBlZQUGg6HSKqW3b9+Gm5sbOBwOjI2NiRo9IsXWkJAQREZGEu1F6sLh4eEwNjYGh8OBm5sbbt26RbRhsViYMGECDAwMYGVlhblz50JNTU1iJg6FaqIQlVItLS1cunQJ33//PVpbW2FjY4OZM2fis88+G7MPhdzcXNDpdEydOhX6+vqoqanBn3/+SXhe9PX1SZktAQEBUFdXx5w5czBnzhxi+8B4A319fbz55pvEb+Hh4QgPD0dJSQn2798/IvMaKaZMmYLu7m6cOXOGUDt89dVXSTUqBqsd2tnZYcmSJYiLi0N8fDxMTU2xdOlSsbeh+/fvo6mpCQEBASM2n5HmpZdeQkdHB7744gu0tLTA3d0du3btImVYcblc0tsyn8/H1q1bwePxwGAw4OLigr1795KWVtzc3PDVV1/hxx9/xN69e2FlZYX3339fZeqmiFRKvby8CJXShIQEwouqq6srUaV04sSJhEppeno6KeNIU1MTwcHBoNPp6O3tRXNzM65evapyKqXFxcXQ0dEhDDEej4ezZ89KVRduaWnB2bNnER4eDk9PT7S2tiI5OZlkbIkUXg0MDNDd3Y3S0lLEx8ejq6trxOenKFTVwyAvxrRK6X/+85/RHoJSo8oPYUUzffr00R6CUnP8+PHRHoLSMlZT75UBeSqISmPjxo1y29f27dvltq+xwthPraCgoKCgoBgjUJ4K2ahO5BEFBQUFBQXFqEIZFRQUFBQUFENkNLM/du3aBXt7e+jo6MDPz48omS6J06dPIzIyEmZmZjAwMEBwcDDi4uKeZupDYkwvf6iaaNRIMzBzgOLJ2Llz52gPQamxs7Mb7SEoLSwWa7SHQCGD0Vr+OHbsGN555x3s2rULoaGh2LNnD2bMmIH8/HyJchJXr15FZGQkPv/8cxgZGeHXX3/F7NmzkZ6eDh8fH4WNc9hGxcsvv4zff/9dbPszzzyD2NhY/PLLLzh8+DBu3boFPp+PxsZGUvbEWMXNzQ0ODg6EwuitW7ceW7jF2toa7u7uYDAYaG1tRW5uLkmPYMKECZgwYQIRhd7c3Iz8/HyVKaQD9NdI2L17N06ePImWlhZ4eHjg448/Fqv9MZiWlhb88MMPuHTpElpaWmBtbY33339fYtGzffv24fvvv8eyZcvw73//W1FTGXH8/PwQFBQEBoOBuro6JCQk4NGjRxLbMhgMTJs2DZaWljAxMUFmZqbE0vfa2tqYMmUKXF1doaOjg6amJiQmJqpcWqQIDw8PODo6QktLCzweD5mZmRLVhQdiY2MDLy8v4rrNzs5GRUUF8bu5uTnYbDZMTExAp9ORnJxM+l1VcHNzw4QJE4h7XlZW1mPveePGjSPd83JycsTueY6OjqR7Xl5enkrd80aab775BqtXr8Yrr7wCAPjuu+8QFxeH3bt3Swz4/O6770jfP//8c/z99984d+6cQo2Kp1r+iI6ORnV1Nelz5MgRAP3V16Kjo/HRRx/JZaAjgaurK5ydnXHr1i0kJiaio6MDkydPllkvw9TUFMHBwSgrK0N8fDzKysoQHBxMqkXR3t6Ou3fvIiEhAQkJCaitrUVoaCip+qSyc+DAAfzxxx/46KOPcOTIETCZTLz22msyy5Z3d3fjtddeQ1VVFb755hucO3cOmzZtkvimlpubi5MnT5JEy1QBNpuNyMhIpKamYt++fXj06BFefPFFqeeGuro62tvbkZqaKlXgikajYcmSJTAyMsKpU6ewe/duXLhwQWWzCjgcDthsNm7evInY2FgIBAJERETIvG6ZTCbCwsJQUlKCixcvoqSkBOHh4aQKphoaGmhqasLNmzdHYhqjgqurK1xcXJCVlUXc86ZMmTLke15cXBzKysoQEhJCuucJBALcvXsX8fHxiI+PR21tLcLCwlTinjcayx9dXV3IysoSU7uOioqSqCgrCaFQCD6fr/A6SU9lVGhraxPFnUQfY2NjAMA777yDDRs2SJW9Hos4OTmhoKAAlZWVaGlpQUZGBtTV1WUqlTo5OaGmpgaFhYXg8/koLCxETU0N6eFXXV0NLpeL1tZWwpPR09PzRCWYxzJ9fX04ePAgXn31VUyfPh1OTk7Ytm0bOjo6cOHCBan9zpw5g+bmZnz//ffw8fGBlZUVfH194eLiQmrX3t6ODRs24LPPPlOJm9JAJk6ciOzsbGRnZ4PH4yEhIQEtLS0SS9kD/W98CQkJyMnJEdPKEeHt7Q1dXV2cOHECFRUVaGlpQUVFhdQqk8qOq6srcnNz8ejRIzQ3NyMtLQ0aGhoyl2BcXV3B5XKRl5eHlpYW4i16YMXWqqoq3LlzR6rXSBVwdnZGfn4+IQCWnp4OdXV1mZVwnZ2dUVNTg4KCAvD5fBQUFIjd86qqqlBdXU3c83JyclTmnidPo6KzsxMtLS2kj6Trur6+Hr29vWIvXCwWa8jen6+//hptbW0KL3xHBWr+f/T09KCrq0v6DxIKhairqyOVPR6Mqamp2BtjTU2N1ItHTU0NNjY20NDQINQplZ2KigrU19eTyqqLpLvv3LkjtV9SUhK8vLywbds2TJ48Gc899xz27t2L3t5eUrtt27YhPDwcwcHBCpvDaECj0WBpaSlWVOnhw4cYN27csPfr5OSEiooKREdH41//+hdeffVVhISEqGQqHIPBgK6uLqm0tFAoRE1NDUlHZTBMJlOsHLWoiN8/BVn3PFkPf1NTU7EHGZfLlXqfVMV7nrzYvn07DA0NSR9ZtSsGX8OyBBgHcuTIEWzatAnHjh2Dubn5U49bFk8VqHn+/Hkx8ad///vf+OSTT55qUKOBqPLjYFGhjo4OUkU+Sf0k9RlYSRIADA0NERERAXV1dfT09CA1NVVlRHakSXebmprKlO6uqKhARkYGZs6ciV27dqG8vBzbtm1DT08PXn/9dQBATEwM8vPzcfToUcVNYJSg0+mg0WhionVtbW0SRdWGipGREezs7JCbm4tjx44Rej00Gg0pKSlPO+wxhaKvW1VG1rGTJn8u6jfUe960adNU7p4nT+N848aNWL9+PWnbQKkHEUwmE+rq6mLGXG1t7WMDe48dO4bVq1fjxIkTI1LU76mMiqlTp2L37t2kbcNdr5Ekfd7d3Q1NTc1hj08W48ePh5+fH/Fd2s1WTU3tsUJDQylKyufzkZCQAE1NTYwbNw6BgYG4cuWKUl5k58+fx+bNm4nvP/30EwDJF5usC7Cvrw8mJiZE+XY3NzfU1tbit99+w+uvvw4ul4svvvgCv/zyi8QLTVUZyjn3uP5tbW24ePEi+vr6wOVywWAwEBwcrPRGhZ2dHQIDA4nvV65cASB+DQ7lxj+GiwkrBFtbW9I9T1Y64pMi6Xjz+XzEx8eT7nlJSUlKec8biDyNCm1t7SHd20Se34SEBDz33HPE9oSEBMydO1dqvyNHjmDVqlU4cuQIZs6cKZcxP46nMir09PQeG90/VCRJny9YsAAvvPCCXPY/mKqqKjQ0NBDfRZoKg61wbW1tqWvXQL+FPlh6WZIlLxQKiTfSxsZGmJiYwMnJSSmFdqZOnUpK9xXV9a+vrye5j3k8nkw3KpPJhIaGBkkPxsHBAfX19eju7kZeXh4aGhqwaNEi4vfe3l5kZWXhyJEjyMrKGrNaMkOhvb0dQqFQzCtBp9NlBrg+jtbWVgiFQtJDU6QPQqPRxBQllQnRUpsI0f//YLlzbW1tqfLnwNCvW1WisrKStPwg7Z73uOMgySsh6XhLuuc5OzurdOCrIlm/fj2WL18Of39/BAcH45dffkF5eTnWrl0LoN/rUVlZiT/++ANAv0GxYsUKfP/99wgKCiK8HLq6ujA0NFTYOMdMTIUk6fN58+Yp7O/19PQQQUStra1oaWmBQCAguZJoNBrMzMxIN7HB8Hg8icEzQ1k7VFYp5cHS3RMmTACTyURaWhrRRiTd7eXlJXU/Pj4+ePToEekhV1ZWBjMzM2hqaiIoKAinT5/GiRMniI+bmxtmzpyJEydOKLVBAfTfdKurq2Fvb0/abm9v/1SpixUVFUTAtAgTExPw+XylNigA8eu2ubkZAoGAJOVOo9HAYrFQV1cndT/19fWwsLAgbbO0tJTZR9mRds8beBxE9zxZ9y9J9zwLCwuZ90mg/w1fWe95A6HRaHL7PAmLFi3Cd999h82bN8Pb2xtXr17FxYsXiaDa6upqlJeXE+337NmDnp4evPHGG7C0tCQ+//rXv+R6PAbzVJ6Kzs5OsTUeDQ0NMJlMcLlccLlc3L9/HwCQk5MDfX19jB8/XuISiSQ3kKKWPqRRXFwMNpuN1tZW8Pl8sNls9Pb2kv6jAgMDIRAICHng4uJiTJ06Fa6urqisrIS1tTVYLBYuX75M9PHw8EB1dTXa29uhqakJGxsbmJmZydX9OJqoqalh2bJl2LdvH2xtbTF+/Hjs3bsXOjo6JJfbRx99BHNzc7zzzjsA+i+Sw4cP44svvsCSJUtQXl6OvXv3YunSpQD6jRcnJyfS39LV1YWRkZHYdmUlPT0dc+fORXV1NSoqKuDj4wNDQ0NCTnrKlCnQ19fHuXPniD6iG7qWlhbodDpYLBZ6e3uJm3pWVhb8/f0RFRWFmzdvwsTEBCEhISr7hlhYWAg3Nze0tLSAz+fD3d0dPT09KC0tJdoEBwdDIBAgOzub6BMZGQkOh4OKigqMGzcOFhYWiI+PJ/poaGiQVDoZDAaMjY3R2dmJ9vb2kZqeQikqKgKbzQafz0draytxzxuo2jpx4kS0t7cT97yioiJERESI3fMuXbpE9Bl8zxs/fjzMzMxw9erVEZ+jvBnNgOd169Zh3bp1En/77bffSN9FS4MjzVMZFbGxsaQ3BABwcXFBYWEhfv75Z9JyhqiY0a+//oqXX375af6swigsLIS6ujp8fX2JIjrJycno6ekh2tDpdDG38o0bN+Du7g43Nze0tbUhLS2NtLSira2NiRMnQkdHB93d3Whubsa1a9ek1hlQRlatWoXOzk5s3bqVKH61Z88eUrBcdXU16YK0sLDAnj17sHPnTsyfPx/m5uZYtmwZVq1aNRpTGBUKCgpAp9MRFhZGFL86evQose7MYDDEXJWi4jdA/9u1u7s7mpqaiNgWPp+PI0eOIDIyEq+++ir4fD4yMzNJniRVIj8/H+rq6ggMDISWlhbq6+tx+fJl0nWrp6dHum7r6+uRkpICLy8vQsY7JSWF9IZuYmKCyMhI4rsoHuHBgwe4cePGCMxM8YjueX5+fk90z0tLS4OHhwfc3d3R1taG69evk+55Ojo6CAoKIu55TU1NuHr1qkrc81Qxi0qejGnpc0o++elQ5PKRqkOV6X46qDLdw0dW4SkK2QyMv1IUW7duldu+/vOf/8htX2MF6uyloKCgoKAYIpSnQjaUUUFBQUFBQTFEKKNCNmPaqHj48OFoD0Gp0dLSGu0hKC3/pMqKimDgmjzFkzGGV6QpKB7LmDYqKCgoKCgoxhKUp0I2CpE+P3z4MD777DPEx8fj0aNHYDKZmDdvHrZs2aLQohtPi4+PDyZOnAgGg4H6+nokJiZKrRegp6eHiIgIWFhYwMTEBDdv3iSlVA2GzWZj7ty5KCoqwunTpxU1hVGjr68PP/74I44dO4aWlhZ4eXnh008/lZn6uXz5cmRkZIhtnzx5Mn755RcAQGZmJvbv34/c3FzU1dXhp59+GpFSsyMJh8OBp6cn6HQ6GhsbkZaWJlMkyNLSEkFBQTA2NkZ7ezvu3LmDgoIC4ndnZ2dMmTJFrN/+/fvFdFVUARcXF7i5uYFOp6OpqQkZGRkyxdNYLBYCAgJgZGSE9vZ25ObmoqioiPjdyMgI3t7eMDU1BYPBQEZGBun4qhqenp4k2fiMjIwhy8br6+uDz+dLFF5zdnYGh8OBrq4uofaqCnVAKKNCNk/lqYiOjsavv/5K2qatrY3KykpUVVXhq6++AofDQVlZGdauXYuqqiqcPHnyqQasKFxdXTF9+nTExcWhsrIS3t7eWLhwIfbt2yexrKyGhgYEAgHS0tIQEBAgc98GBgaYOnWqSqsd7t27F7/++iu++OIL2NnZYffu3Vi5ciViY2Ol6lj873//Q3d3N/G9qakJc+fORXR0NLGtvb0dLi4ueP755/HWW28pfB4jjYODA1E+u6amBmw2GzNmzMDx48clVtXU19dHdHQ0CgsLkZSUBBaLhbCwMHR0dJCEybq6unDs2DFSX1U0KOzs7BAQEID09HTU1tbC2dkZ06dPx99//y3x+DEYDEybNg3FxcW4du0azM3NMXHiRHR0dBD1aNTV1cHn81FaWvrYa1vZ4XA4cHV1RVpaGpEKPm3aNJw9e1bqEhaTyUR4eDhhSNjY2CA8PBxxcXFESq6oJHhmZiZqa2vh5OSEiIgInDt3TmVqfFBI5qmMCpH0+WCMjY1x6tQp4vuECROwbds2LFu2DD09PWMyZSowMBB37tzB3bt3AQCXLl2Cvb09fHx8kJycLNa+ubkZiYmJAEAqWT0YNTU1zJ49GykpKbCxsVFJDYu+vj788ccfWLt2LaKiogAAO3bsQEhICM6fP48XX3xRYj8jIyPS9wsXLkBHR4dkVEyePBmTJ09W2NhHG09PT9y7dw/37t0DAKSlpWHcuHHgcDjIzMwUay8qziaqOdHU1AQzMzN4enqSjIq+vj4IBIKRmcQowuFwcP/+fRQXFwPo92xZWVnBxcWFKCA2EGdnZ7S1tRHHtrm5GaampnBzcyOMCh6PRzwcB2plqCJsNpuQjQeA69evY8GCBbC3tyeO6WBcXV1RXV2NvLw8AEBeXh5YLBbYbDahLcNms/HgwQOi+GFWVhasrKzg7OxMFCBTVihPhWxGrGZqc3MzDAwMxqRBQaPRYGFhQarABwClpaWwtrZ+qn2HhoZCIBAQxooqUlFRgbq6OoSFhRHbtLS0EBAQgNu3bw95P6dOncLMmTNlKiSqEjQaDUwmU2yJraKiQqryIIvFktjezMyMdLPT1NTE4sWLsWTJEjzzzDMyNViUFRqNBlNTU1RVVZG2V1VVSQ20NTc3l9ieyWT+4x4WsmTjpcmYA/1BzIPVh0XHEOj/fzExMVFZaXk1NTW5fVSRpzIqRNLnAz9btmwRa8fj8bBlyxasWbPmaf6cwhBJUA92l7a1tcmUT34c1tbW8PT0RExMzNMOcUwjWicd/OBiMpmP1QMQcffuXRQVFSlMQG4soqOjAxqNJuZREAgEUg0rXV1die1pNBoh8tTU1IQrV64gLi4Oly9fRm9vL+bOnQsDAwPFTGSU0NbWlnj8JImFiZAkljX4+P1TkCV9Lu34ifrJ6iPt/0UgEMjcL4VqoHDp85aWFsycORMcDgefffaZ1H1Jkj4f6aUSeaZyaWlpYfbs2YiNjVU5N/TZs2dJ/5d79uwBIO4WfJLjefLkSTg7O8tcSlJVhiPbLYva2lpSoCKXy8Xzzz8Pd3d3XL9+/an2rQpIOy9VPZXTzs4OEydOJL4nJSWN6N9XU1NTiWOsqh4GeaFQ6XM+n4/o6GgwGAycOXNGpkCYJOnzadOmjUikvzQJaj09vWFLUBsZGcHIyAgLFiwgtolOxg8//BC//PILmpqahj3m0SQiIoKkPjpQ+tzc3JzYzuPxZLpRRQgEAly4cAFvv/22/Ac7huno6IBQKBTzSujo6EgNZpP0tqerqwuhUChTrrqurk7lPBWdnZ0QCoUSJcylGfKS3sJFx2/wS42qIU02fvDxknX8AMnS5wP7yPp/UQVpeVVQWlUkCnMDtLS04JlnnoG2tjbOnj37WNfixo0bsX79etK2H374QVHDIyEUCsHlcmFnZ0dKLbOzs5MarPQ4eDwe9u3bR9o2adIkaGlpITExUWJGibIgWuoS0dfXBzMzM6SmpoLD4QDoNzQyMzPx/vvvP3Z/MTEx6Orqwpw5cxQ25rGIUChEfX09rK2tSfE848aNE4vvEVFTU0NIHQ9sX1dXJ/Mt0NTUFI2NjfIY9phBKBSCx+PB0tKSpCRsZWUlNdOqtrYWNjY2pG1WVlaor69XibdoWYikzwciko0XnRsi2XhZsVB1dXWwtLREYWEhsc3S0pIwWIRCIRoaGmBhYUH6f7CwsJCaoq9MUJ4K2ShE+lxbWxtRUVFob2/HwYMH0dLSQjxEzczMCAt5IJKkz0dy6SMjIwOzZ88Gl8slUkoNDAyIi2vy5MnQ19fH+fPniT6it3JNTU3Q6XSYm5ujt7cXPB6PJEUtQvQmNNQ4A2VBTU0NK1aswJ49e2BnZwdbW1vs2bMHOjo6mDVrFtHuww8/BIvFwnvvvUfqf/LkSUyfPh3GxsZi+25rayM9MCoqKlBQUABDQ0NYWVkpblIjxN27dzF16lTU19cTKaUMBoOoixAQEAA9PT1CxrigoABubm4ICgpCYWEhWCwWXFxccPnyZWKfvr6+qK2tRXNzM7S0tODu7g4mk4nU1NTRmKJCyc/PR1hYGHg8Hurq6uDs7Aw9PT0im8bX1xd0Op3ISigqKoKrqyv8/f1RXFwMMzMzODo6kiS5aTQaUU+HRqOBTqfD2NgYPT094PP5Iz9JBVJQUAB3d3fw+Xy0tLQQsvEDM4lCQkLQ3t5Oko2PiooiycZbWloiLi6OtN+QkBA0NDSgrq4OTk5O0NPTG/ZLGoXyoBDp859//hnp6ekAILY8UlJSMiYVDAsLC6Grq4vQ0FDo6emhvr4eJ06cIElQD3YfD5TotrS0hJubG5qbm8XiTP4JvPrqq+js7MR///tfNDc3w8vLCwcOHCB5NKqrq8VchyUlJcjKysKBAwck7jc3NxcrVqwgvm/fvh0A8Nxzz+GLL75QwExGlocPH0JHR4d4+DU0NCAmJoZ4o6TT6aRjyOfzERsbi+DgYLi5uRGy0wMfAtra2ggPDwedTkdXVxfq6+tx9uxZlSg8NJjS0lJoa2vDy8uLKLJ06dIlYtlSV1eXFGzd2tqKS5cuISAgAK6urmhvb0dGRgbJcNXV1SV5zdzd3eHu7g4ul0t6cKoC+fn50NDQIMnGX7p0aciy8V5eXmhtbcW1a9dIsvFlZWXQ1taGh4cH8f+SlJQ07OXksQTlqZDNmJY+V4WHxmiyYcOG0R6C0iKq6EkxPFSxHstIIcmTSzE0li1bpvC/8d1338ltX++8847c9jVWoCJOKCgoKCgoKOTC2KtERUFBQUFBMUahlj9kM6aNCqpQytMRHh4+2kNQWt59993RHoJSMzAzgOLJUObMsH8ClFEhG2r5g4KCgoKCgkIuKET6PDY2FmvWrEFiYiKqqqrAYDAQEhKCHTt2wNXV9akGrEg8PT3h6+sLPT098Hg8XL16VUwnYCDW1tYIDw+Hqakp2trakJWVhZycHOJ3Go0Gf39/Ik2wsbERqampKCsrG4npjCjz5s3D4sWLYWpqitLSUvzwww9S9U68vb3xv//9T2z70qVLiSj8GTNm4KOPPhJrM23aNKLYlirR19eHS5cuISMjAwKBADY2Npg7d65UDRARubm5SEhIAI/Hg6mpKaKiouDm5kb8npiYiEuXLpH6MBgMfPzxxwqZx2jg6+uLoKAgMBgM1NXVITExUWqdCj09PUyfPh0WFhYwMTFBZmYmIQw4EG1tbUyZMgUuLi7Q0dEhskoePHig6OmMKEFBQZg0aRL09fVRU1OD8+fPS62RIkpltrS0hIaGBmpqapCYmEhKE3Vzc8PUqVNhamoKdXV11NfX49q1a0+kATTWoTwVslGI9DnQr+63dOlSjB8/Hg0NDdi0aROioqJQUlIyJqObnZycMGnSJCQlJaGqqgoeHh6YO3cuDh48KDE33cDAAHPnzkVubi7i4uJgZWWFqVOnQiAQEMp8wcHBcHV1xaVLl9DQ0ABbW1vMmjULx48fV6n0voiICLz99tv45ptvkJOTgzlz5mDnzp1Yvnw5qVz0YJYsWUJKMRtcYbS1tRVLly4lbVNFgwIArl69ipSUFCxYsABMJhNJSUnYv38/3nvvPamZFGVlZThy5AgiIyPB4XCQn5+Pw4cPY82aNRg/fjzRjsViYfXq1cR3VbopstlsREZGIjY2FhUVFfDx8cGiRYvwyy+/SFxG0NDQQHt7O1JTUxEYGChxnzQaDYsX/z/2zjusqev/428SZgiEvVFkb2TKEEXce+9aW6vWWmvtsFZtq93ab1tta9XW2tZaW1frliUgQxAQFGSDArJHgDCCrOT3B0/uj0uGIARIel/Pc5+H3Jxzc87ljnM+5/P5vFeDy+Xi33//RVNTEzQ1NeXu2nN1dcW8efNw5coVFBcXY8KECXj55Zfx7bffgsPhCJUXKJeGhYWhra0NXl5eWL9+PY4ePUpMvtra2hAdHY2amhp0d3fDwcEBy5YtQ0tLi9zkqJCn+0caDGr5QyB93nsTJDDavHkzJk2aBAsLC3h4eOCzzz5DaWmp2FHwSOPh4YGsrCxkZWWhoaEBsbGxaGlpgYuLi8jyLi4uaG5uRmxsLBoaGpCVlYXs7Gx4eHgQZezt7ZGSkoLi4mI0NTXh4cOHKCkpIZWRB1auXIkbN27g+vXrKCkpwQ8//ICamhosXrxYYr2GhgbU19cTG4/HI33P5/NJ39fX10uzGyMGn8/HnTt3MGXKFDg7O8PIyAjLly9HZ2enRJnoO3fuwNraGkFBQTAwMEBQUBCsrKyEklzRaDRoaGgQW9909LKMj48P0tPTkZ6eDjabTWSrFXePcTgcREREIDMzU2xabkHOi4sXL6KsrAxNTU0oKyuTOECWRSZOnIh79+4hJSUFtbW1uH79OjgcDnx9fUWWv379OmJjY1FWVgY2m42wsDCw2Ww4ODgQZR4/foysrCzU1taivr4ed+7cIbIVU/w3GBZHzdbWVvz2228YN26cUIrc0QCNRoOBgQHu3btH2l9SUiKU3EuAsbGx0DJGSUkJHB0dQaPRwOPxQKfT0d3dTSrT1dUlF5kgBSgqKsLW1hZ//vknaX9KSgqcnZ0l1j158iRUVFRQXFyMU6dOCZlI1dTUcOHCBdBoNBQWFuKXX36Rm9lObxoaGtDc3AwbGxtin6KiIsaNG4eSkhKSCFRvnjx5QpKbBwBbW1uhQUVdXR2++OILKCoqwtzcHDNnzhQS/pNFaDQajI2NkZiYSNpfVFQEMzOz5z6ujY0NysvLMXPmTNja2oLL5SIrKwuJiYlyk8qbTqfD1NQUMTExpP0FBQVCaeDFoaCgABUVFbE6NQBgZWUFfX19uVJqpiwVkhnUoEIgfd6bXbt24cMPPwQAHD16FO+99x5aW1thb2+PiIgIKCsrizzWSKqUqqmpgUajCd0cbW1tYqXPGQyGkOgOl8sFnU4nBKGePHkCd3d3lJeXo7GxEWPGjIGlpaVcXZQsFguKiopCuhINDQ1iX1xsNhtfffUV8vLyoKSkhJkzZ+Lw4cPYvn070tPTAfQM0L788ks8evQI6urqWL58OY4ePYqXX35ZLvQDeiNYXut7LzGZTImicy0tLSLr9F6uMzc3x4oVK6Cnp4eWlhZERUXh2LFj2LFjh9hrW1ZgMBig0WhCWRpbW1sH1TdtbW2wWCxkZmbi3Llz0NHRwYwZM0Cj0Yh037IOg8EAnU4XWtptbm6Gra1tv44RGBgIJSUlId8pFRUV7NmzB4qKiuDxeLhy5QqxJCwPyNPzWxpIVfp87dq1mD59OiorK/H1119jxYoVuHPnjkhxMVEqpTNnzsTs2bMH08QBIWoWImlm8qxZS0xMDKZOnYp169YB6DG9ZmdnE6Jb8sRAzl1paSnJkS4rKwsGBgZYtWoVMajIzs5GdnY2Uebhw4c4efIkli5diu+++26IWz+83L9/H5cvXyY+r1+/fsiOzefzSQ89Ozs70vdjxozB//73P6SlpVEhxxJobW1FSEgI+Hw+qqqqwGQy4evrKzeDCnH0V57czc0N06ZNwx9//CE0qOvo6MD3338PZWVlWFtbY+7cuaivr8fjx4+l1exhhVIplYxUpc9ZLBZYLBZsbGzg6+sLbW1tXLp0CatXrxYqK0ql9MSJE4NpXr9pa2sDj8cTmt2oqamJNe1xuVwhyWoGg4Hu7m5C3retrQ3Xr18nrBetra0ICAiQqzh0DoeDrq4uIauEtrb2gFQxs7KyMGPGDLHf8/l85ObmDsqsPVpwdHQkLQMKlshaWlpI+jKiLBG9YTKZQqqTra2tEusoKyvDyMiIpNMgq3C5XJH3rbq6+qA0JlpbW9Hd3S2kd8FkMomlTVmHy+Wiu7sbGhoapP2irqm+uLq6YunSpThz5oxICwSfzyeur8rKSsLfR14GFRSSGdYhF5/PF+scpaKiAk1NTdI2XCqlPB4PNTU1JI95oGdWV1lZKbJOZWWlyPI1NTVCD53u7m60traCRqPB2tparm6urq4u5Ofnw9vbm7Tf29sbmZmZ/T6Ora3tM1901tbWcvEyVFFRgZ6eHrEZGBhAQ0OD5C8iUIqUtL49ZswYIR+TgoICoeuyN11dXaipqRF6mcgiPB4PlZWVGDduHGn/uHHjBrVEVlpaKqSYq6uri+bmZrkYUAA9z6Ty8nKhSaG1tbXEkHc3NzcsX74cZ8+eJZRg+8NwKk5LGwUFhSHb5BGpSJ83NTXh3LlzmDFjBvT19VFeXo6DBw9CTU0Nc+bMGVSDpUVaWhpmzpyJ6upqVFZWwsXFBRoaGkTeCX9/fzCZTISHhwPoMce7ubkhMDAQmZmZhEppaGgocUxDQ0Midl5gPlVQUBByCJV1zp07hw8++AC5ubnIysrCggULYGBgQJj4X331Vejp6eHzzz8HACxfvhxVVVUoKiqCoqIiZs6ciaCgIFLuhJdeegnZ2dkoLS2Furo6li1bBhsbGxw6dGgkuihVFBQUEBAQgNu3b0NPTw+6urq4ffs2lJSUMH78eKLc+fPnoampiVmzZgEAAgIC8PPPPyMmJgYODg7IyclBYWEhXn31VaLOzZs3YW9vDy0tLbS0tCA6Ohrt7e1yE4GUnJyMBQsWoLKyEuXl5XB3d4empibS0tIAAEFBQdDQ0MC1a9eIOgYGBgB6rDYMBgMGBgbg8Xioq6sD0PMs8PLywowZM3Dv3j1oa2vD398fKSkpw99BKRIfH48VK1agvLyccAjW0tIiFKZnzpwJFouF8+fPA+gZUKxYsQLXrl3DkydPCItYZ2cnMVkMCgpCWVkZ6uvrQafTYWdnBw8PD9Jyn6wjr4OBoUIq0udRUVGIi4vD4cOH0dDQAENDQ0yaNAkJCQnEDT3aKCgogJqaGiZMmAAGgwE2m40rV64Qjkzq6uqk2V1TUxOuXLmCSZMmwdXVFa2trYiJiSGZAxUVFeHn5wcWi4XOzk4UFxcjLCxM7uLdo6KioKmpiZdeegm6urooKirCe++9h+rqagA9s7zeSZyUlJSwdetW6Ovro729HUVFRdi5cyfu3r1LlNHQ0MDOnTuho6OD1tZWFBQUYNu2bcjJyRn2/g0HkyZNQmdnJ65cuUIkv9qwYQMpR0VjYyPpgTZ27FisWrUKERERiIiIgI6ODlavXk2yVHA4HJw9exZcLhfq6uowNzfHa6+9JjQTl1VycnKgpqaGiRMnEgP4c+fOEUuMTCaTtKQEABs3biT+NjY2hrOzMxobG3H06FEAPc6KZ8+exbRp07Bx40Y0NzcjJSVFKMpE1snIyACDwcDUqVOhoaGBqqoq/P7774RzsKamJrS0tIjyEyZMAJ1Ox6JFi7Bo0SJif2pqKi5cuACgZ6C2aNEi4pkn+H+IS4RHIX+MaulzWXfIG2kuXrw40k2QWSjtj8FBaX88P/LkczXcHDhwQOq/MZS+fps2bRqyY40W5Gehi4KCgoKCQspQ0R+Soc4OBQUFBQUFxZAwqi0VzxJTopCMJDE0Csl0dXWNdBNkmr6J4Sj6z8yZM0e6CRQSoBw1JTOqBxUUFBQUFBSjCWpQIRmpSZ8L4PP5mDNnDkJDQ3Hp0iWS1/BoxNnZGVZWVlBSUkJ9fT3u3bv3TMcpMzMzuLi4EIljMjIyUF5eTnzv4OAAMzMzaGpqoru7G3V1dUhPTxepfiqrrF27Fps2bYKBgQEKCgrw6aefSgydVVZWxhtvvIGFCxdCT08PVVVVOHr0KMm5VENDA++88w4R2lZaWoovv/wSt2/fHoYeDT9OTk6wtLQkrr20tLRnXnumpqZwdnYmrr3MzEzStWdlZQUrKysiQZQgq2vfUHBZxsfHh4j+qKmpQUhIiNhcC46OjvD29oaxsTHodDpqamoQHR0tlMTJ0dERU6dOhY6ODurr63Hr1i25jDzi8/m4fv064uPjweVyYWFhgdWrV0vUJ6qoqMC1a9dQUlKC+vp6LF++HFOnTiWViYmJQWxsLJFXxtjYGHPnzn2mHhCF7DMon4pZs2ahsrKStP3999+kMocPH5aZkZ29vT3s7OyQmpqKiIgItLW1YcqUKRITt+jq6sLf3x/FxcUIDQ1FcXExAgICSBkmDQwMUFhYiIiICNy+fRsKCgoICgoalRLwz8PcuXPxwQcf4OjRo5g/fz5SUlLw66+/ihVjA4Dvv/8efn5+eP/99zF9+nTs2LGDlBRMSUkJf/zxB8zMzLBt2zZMmzYNe/bskauXYW/s7e1ha2uLtLQ03Lp1C0+fPsXkyZOfee35+fmhpKQE4eHhKCkpgZ+fH+na43K5yMjIIMJOa2pqEBAQIBRmKas4Oztj9uzZiImJwbFjx1BSUoJ169aBxWKJLD927Fg8evQIp0+fxrFjx1BUVIS1a9eSrlWBXkp6ejp+/PFHpKenY+XKlXKRzbUv4eHhiIyMxKpVq/D++++DxWLhu+++I7ICi6KjowN6enpYvHix2OtIW1sbixYtwu7du7F7927Y2dnh2LFjcrEkO5LJr44ePYpx48ZBVVUVnp6eiIuLk1g+JiYGnp6eUFVVhaWlJY4fP/683e43UpM+B4D09HR8++23+PXXXwfd0OHAzs4OWVlZKCsrA4fDQVJSEuh0usSshnZ2dqiqqkJOTg6am5uRk5OD6upqkuZCTEwMioqK0NTUhMbGRiQnJ0NdXV0ulCIBYMOGDbhw4QLOnz+PR48e4bPPPkNlZSXWrl0rsvykSZMwYcIEvPLKK0hISEB5eTkyMjKIhEUAsGzZMrBYLGzZsgWpqamoqKhAamqq3IYq2tjYICcnB+Xl5WhqakJycjLodLrE7Jg2Njaorq5Gbm4umpubkZubi+rqapIgVGVlJaqqqtDS0kJYMrq6uqCrqzsc3ZI6/v7+SEtLQ2pqKmpraxESEoKmpib4+PiILB8SEoL4+HiUl5cTFoj6+nrS/ern54dHjx4hNjYWdXV1iI2NxePHj+Hn5zdc3RoW+Hw+IiMjMXv2bLi7u8PU1BTr169HR0cHkpOTxdazsLDA0qVL4e3tLXbQ6+rqChcXFxgaGsLQ0BCLFi2CiooKioqKpNWdYWOkBhXnzp3Djh07sHfvXty/fx+BgYGYPXs2njx5IrJ8UVER5syZg8DAQNy/fx979uzB9u3b8c8//wzFaRCL1KI/uFwuVq9ejSNHjsDIyEhaPzNkqKurQ01NjTQTFqTv1tPTE1tPV1dXaPZcWVkpsY6SkhIAyEUSLCUlJTg7OwsJLcXHx4vN2jh16lQ8fPgQmzdvxp07d3Dr1i3s3r2blOhp2rRpuH//Pj7++GMkJSUhJCQEr732mlyGc4m79mpra5957QkSjAmorq4WO2BQUFCAubk5FBUV5SLdOZ1Oh4mJidDSRWFhIUlbRRIKCgpQVlYmOZaam5sLHfNZ6c9lkbq6OjQ1NcHBwYHYp6SkBBsbmyGVEuDxeEhJSUFHR4dQSnVZhEajDdk2EL799lu88sor2LhxIxwcHHD48GGYm5sLiXoKOH78OMaMGYPDhw/DwcEBGzduxIYNG/D1118PxWkQi9Skz9966y34+/tj4cKF/TqWKOnzzs5O4gUsbQTKqX3Nfu3t7ULCYX3r9W13e3u7SCVWAe7u7qitrQWHwxlEi0cH2traUFRUJFIcC6irq4O+vr7IOmPGjIGXlxfa29vx2muvQUdHBx9//DFYLBbef/99AD0Pdj8/P1y5cgWvvPIKLCwssH//ftDpdBw5ckTq/RpOxF17T58+lSjhraqqKrJO32uPxWIhODgYdDodXV1duHPnjlwkWBLId/cVwGppaem3tom/vz+UlZVJOjVMJlOknLokoTZZRHAN9F3C0NTURH19/aCPX15ejq+++gqdnZ1QUVHBq6++KtFX47+IqPeeiooKaYIF9ExAU1NTieejgBkzZiAhIUHksRMTE4VEGmfOnImTJ09K9d0qFenzq1evIioqCvfv3+/3sURJny9duhTLli0bTBPFMnbsWHh5eRGfY2Njn/tYA0lK6unpCS0tLdy6deu5f2800vccSJJQFnz31ltvES+Ezz//HD/++CP27duH9vZ20Gg0sNls7N27FzweD5mZmTAwMMCmTZtkflAxZswYeHp6Ep/FyWn3R4a6P9dec3MzIiIioKSkBDMzM/j4+OD27dtyMbAQRX/lu11cXBAcHIwzZ84IDSJE1R/FyYf7RVJSEv766y/i8+uvvw5AOJphqPppaGiIvXv3oq2tDWlpaTh16hTefvttmR9YDKWPoKj33r59+7B//37Svrq6OnR3dwulWTA0NBTrZ1ZVVSWyfFdXF+rq6iT6vA0GqUifR0VF4dGjR6S88UDPICEwMFCk974o6fMrV64MpnkSKS8vJ5mABaaovrM/FRUViU5LomaG4up4eHjA1NQUkZGRchPH39DQgK6uLiGrhK6urpD1QkBtbS2qq6tJM8xHjx6BRqPB2NgYxcXFqKmpQVdXF0kV8tGjRzAwMICSkhI6Ozul06FhoKKigjQTlHTtiVP1BXquPTU1NdI+UdYLHo9HnOuGhgbo6OjAxsYGqampg+7LSCKQ7+5rQVBXV3+mfLezszMWLVqEc+fOCZn6RUnOD1ZOfTTg5uZGWn4Q5GLhcDgkx9bm5uYhceRVVFQktJ7Gjh2LkpISREdHi/W1khWGclAh6r3X10oh6bf5fL7E9ogbMEozeEIqC9Tvv/8+MjIy8ODBA2IDgEOHDuG3334TWUeU9Lk0lz66uroI57WWlhY0NTWhra2N5P9Bo9FgYGAg9uUIAGw2W8hnxMjISKiOh4cHzMzMEBUVJfMPp950dnYiMzMTAQEBpP0BAQEkx8vepKamwsDAgLSsNG7cOHR3dxNS86mpqRg7dizp4h83bhyqq6tlekABiL/2es8qaDQa9PX1n3ntiZqJ9MdfQh58U7q7u1FRUQErKyvSfisrK5SWloqt5+LigiVLluDixYvIz88X+r60tFSkJLg4hzhZQVVVFQYGBsRmbGwMTU1NUqhsV1cXCgoKYGlpOeS/z+fzZf7eHWpEvfdEDSr09PRAp9OFrBI1NTVik0QaGRmJLK+oqChVR+1BPVkE0ue9t7q6OhgZGcHZ2Zm0AT1m39HsqJOXlwdHR0eYmpqCxWJhwoQJ6O7uJsW8T5gwAa6urqQ6RkZGsLe3h4aGBuzt7WFkZIS8vDyijKenJywsLJCYmIiuri6oqqpCVVVVbkJKf/31V6xYsQLLli2DlZUV9u7dCxMTE8LU+u6775Kcg65evYrGxkYcPHgQ1tbW8Pb2xvvvv4+LFy8SM/O//voLWlpa+Oijj2BhYYGgoCC89tpr+PPPP0ekj9KmoKAADg4OMDU1haamJry9vdHd3U16kfn4+MDFxYVUx9DQkHTtGRoakl6ULi4u0NPTA4PBAIvFgrOzM/T19WX+BSkgISEBnp6e8PDwgL6+PmbPng0Wi0VEL0yfPh1Lly4lyru4uGDp0qUIDQ1FaWkpmEwmmEwm6UGemJgIKysrBAYGQk9PD4GBgbCyspI7lVIFBQVMnToVoaGhuH//PsrLy3Hq1CkoKyuTomd+++03XLp0ifjc1dWF0tJSlJaWoru7G42NjSgtLUVNTQ1R5vLlyygoKEBdXR3Ky8tx+fJl5Ofni43KkSVGIvpDWVkZnp6eiIiIIO2PiIiAv7+/yDp+fn5C5cPDw+Hl5SXVCbtUpM9lNewvNzcXioqK8PLygrKyMthsNm7fvk1K2dzXcY7NZiMhIYEIoWppaUFCQgLJvG1jYwMAQglikpKS5CLE6saNG9DS0sIbb7wBfX19FBQU4JVXXiFi0gWzIgFcLhcvvvgi9u3bh8uXL6OxsRE3btzAt99+S5SprKzESy+9hL179+LmzZuELPNPP/007P0bDnJzc0Gn0+Hh4UFcezExMaRrj8FgkNa72Ww27t69C2dnZzg5OaG1tRWJiYmka09FRQUTJkyAqqoqOjs7weFwEBcXJxQ1IqtkZmaCwWAgKCgIGhoaqK6uxunTpwknaCaTSTLte3t7g06nY/78+Zg/fz6xPy0tjXhxlpaW4sKFC5g6dSqCg4PR0NCA8+fPo6ysbHg7NwzMmDEDHR0d+Pvvv8HlcjFu3Dhs376dtKRbX19PegE2Njbi888/Jz4LcqDY2NjgnXfeAdDjBPrbb7+hqakJampqMDU1xRtvvAFHR8fh65yUGCkr39tvv41169bBy8sLfn5++Pnnn/HkyRNs2bIFQM9SSnl5Of744w8AwJYtW3DkyBG8/fbb2LRpExITE3Hy5EmhXFJDzaiWPj979uxIN0Gm2bt370g3QWb58ssvR7oJMs3Dhw9HugkyS3Bw8Eg3QWaZMmWK1H9jKN9Lq1atGlD5o0eP4quvvkJlZSWcnZ1x6NAhTJo0CUBPluvi4mKSz2JMTAzeeustZGVlwcTEBLt27SIGIdKC0v6goKCgoKDoJyOZIXrr1q3YunWryO9+//13oX2TJ08W69smLahBBQUFBQUFRT+RFdmJkWJUDyrEiQJR9A9R4b4U/WMgOVYohHF3dx/pJsgs8uYQOpwMx/IHhWSkplIaFBSEmJgY0ncrV64c1X4S7u7u8PHxAZPJRF1dHSIjI8U6Z6mrqyM4OBiGhobQ0dFBamoqIiMjxR7bwcEBCxYsQH5+PsmTWl6YN28eli9fDh0dHZSUlOD48eOkLIW9cXV1xf/+9z+h/Rs3biSFAk6cOBEvvvgijI2NUVlZid9//11s9jhZxtfXF4GBgdDQ0EBNTQ2uX7+O4uJikWWdnJwwYcIEGBsbQ1FRETU1Nbh16xYKCgpIZYKCgqCrqws6nY66ujrEx8fL9UCJUnh9Pjw8PODr6wsmk4na2lrcunVLbDiuuro6pk2bBiMjI+jo6CAlJUVkEj8VFRUEBQXBzs4OqqqqaGxsRGRkJB49eiTt7gwLlKVCMoOyVMyaNUso70Tv0KxNmzbhk08+IT73TdQzmrC3t8fUqVMRHh6O8vJyjB8/HsuXL8cvv/wiUqKcTqeDy+UiMTER3t7eEo+tqamJKVOmSIydl2UmT55MeBpnZWVh7ty5+Oyzz7Bp0ybU1taKrbdhwwZwuVzic++05Q4ODtizZw9OnTqFhIQE+Pv7Y+/evXj77bdJ4bqyjouLC+bOnYsrV66gpKQEEyZMwEsvvYRDhw6JTOM+btw4FBYWIjw8HG1tbfD09MSLL76Io0ePEjk+uFwuoqOjUVtbi+7ubtjb22Pp0qVoaWkhDT7kBYHCa3JyMpqbm+Ho6IjJkycjJCSEFD3TG4HCq2AgYWpqCj8/P0RFRRHRMwKFV0EiLQsLCwQEBCAiIkIuspE6ODhg+vTpCA0NRVlZGdzd3bFy5Ur8/PPPIvunqKgILpeLO3fuiA0NpdFoWL16NbhcLv799180NTVBU1NTLnSOBFCDCslIVaWUwWCQvhMnRzwa8Pb2RkZGBjIyMsBmsxEZGYnm5maxZtympiZERkYiKytLYtZDBQUFzJ8/H/Hx8WhsbJRS60eWJUuWICwsjIj9P378OGprazFv3jyJ9RobG9HQ0EBsvbNnLl68GGlpaTh37hxKS0tx7tw5PHjwAIsXL5Z2d4aVwMBA3Lt3D/fu3UNtbS2uX78ODocDX19fkeWvX7+O2NhYlJWVgc1mIzw8HGw2myQKVVRUhOzsbNTW1qK+vh4JCQmoqqqChYXFMPVqeKEUXp8PHx8fpKenIz09HWw2G7du3UJTU5NYIUAOh4OIiAhkZmaKfea5ublBTU0NFy9eRFlZGZqamlBWVkbKYSHrjJSgmKwg1V6dOXMGenp6cHJywrvvvityxj8aoNFoMDIyEsoZUVRUBFNT00EdOyAggJjxyCOKiooiUz6npqY+Myb96NGj+Ouvv3DgwAG4ubmRvnNwcBA65r179+Qizl2AQGWzr/VgIIqYCgoKUFFRkZj23crKCvr6+nKRE6UvlMLr8yFIid83RXlRURHMzMye+7g2NjYoLy/HzJkz8eabb2LTpk3w9/enZvf/IaSmUrp27VqMGzcORkZGyMzMxO7du5Geni6U4Ws0wGAwQKPRSKZ4oEeZUJJK5LMwNTWFq6ur2NTk8oCmpibodLqQFaaxsZFktepNfX09Dh8+jIKCAigpKWHq1Kk4cOAAdu7cSfhhaGtrD+iYsshQqGxOnDgRysrKQoNWFRUV7N69G4qKiuDxeLhy5YqQnLc8QCm8Ph+CZ54oNdbBPPO0tbXBYrGQmZmJc+fOQUdHBzNmzACNRhMrnCdrUAMkyUhFpRTo8acQ4OzsDBsbG3h5eSEtLU2keU2UBGxXVxcUFYcvQEWU0ubzoqysjHnz5iE0NFRuxMMkMZBzV1ZWRnKAzcnJgb6+PpYtW0Zy7hzFedmkTn/67ubmhmnTpuGPP/4Qejl0dHTghx9+gLKyMqysrDB37lzU19fLvLWCUngd/bS2tiIkJAR8Ph9VVVVgMpnw9fWlBhX/EaSiUioKDw8PKCkpoaCgQOSgQpQE7NSpUzF9+vTBNLFfcLlc8Hg8oRE6g8F4bvEvLS0taGlpkXQHBBfjzp07ceLECbnwsWhqakJ3d7eQBYHFYqGhoaHfx8nNzSVlEmxoaBA6ppaW1oCOOdoRp7IpiEaQhEAU66+//hLpVc/n8wkzfWVlJQwMDBAUFCTzgwpK4XVoEPfMG6waa2trK7q7u0kDtrq6OjCZTNBoNJLfFIV8MmyeIllZWejs7BSr4b57925wOBzSNlwxxzweT6Qjm4WFBSnEbCCw2WycPHkSv/32G7EVFBSgpKSEyIkvDwhUDfsOFD08PJCdnd3v41hZWZFeFjk5OULH9PT0HNAxRzsClU2BNoyAZyliurm5Yfny5Th37tyAImGG0+onLSiF16GBx+OhsrJSSOBx3Lhxg9I4KS0tFZoM6Orqorm5WW4GFCMhKCZLDOopI1ApJR1QUREcDgdnzpzBnDlzoKenh+zsbLzzzjtwd3cXksgWoKKiIiT5OpwPwZSUFMybNw9VVVWoqKiAm5sbNDU1Cdn2SZMmQUNDAzdu3CDqGBgYAACUlJSgpqYGAwMDdHd3g81mo7u7W+ihJpg5SXrYySL//vsvdu7cifz8fOTk5GDOnDkwMDAgztXLL78MPT09IjfF4sWLUVVVhZKSEigpKSE4OBiBgYGk8OPLly/j66+/xooVK5CYmAg/Pz+4u7vj7bffHpE+Sou4uDisWLECZWVlePLkCXx8fKClpYWkpCQAPXlfNDU1ceHCBQD/P6C4fv06njx5Qlg5Ojs7ietr8uTJKC8vB5vNhqKiIuzs7ODh4YHLly+PSB+ljUDhtaWlBc3NzXBwcBCp8NrW1kZokhQUFGDKlCmwt7cnQkoNDQ0RFRVF1HFxcUFlZSW4XC6UlJRgbm4OfX19xMXFDXsfpUFycjIWLFiAyspKlJeXw93dHZqamkRaZ4FI27Vr14g6gmeesrIyGAwGDAwMwOPxiGdaWloavLy8MGPGDNy7dw/a2trw9/dHSkrK8HdQSsjDoFKaSEWlNCIiApGRkfjuu+/Q0tICc3NzzJ07F/v27Ru1ct+5ublQU1NDQEAA1NXVUVdXhwsXLhAWBSaTCU1NTVKdl19+mfjb2NgYTk5O4HA4OH78+LC2faSJiYmBhoYG1q5dSyS/+uCDD4gwMh0dHejr6xPlFRUVsXnzZujq6qKjo4Mo3/vBk52djS+++AIvvfQSXnzxRVRWVuKLL76QqxwVQI/wlrq6OqZOnUqobP7+++/E0piGhga0tLSI8j4+PqDT6Vi4cCEWLlxI7E9NTcXFixcB9DzwFy5cCBaLhc7OTtTW1uLcuXNyK/JFKbw+Hzk5OVBTU8PEiROJ5Ffnzp2T+MzbuHEj8bexsTGcnZ3R2NiIo0ePAujxQTl79iymTZuGjRs3orm5GSkpKVSW0P8Qo1ql9ODBgyPdBJmm96yLYmCIi9Wn6B9Umu7nRx6jdIaLPXv2SP03rl+/PmTHelYuH1lE9hdZKSgoKCgohgl59YUYKqjFIQoKCgoKCoohYVRbKt5///2RboJM88EHH4x0E2QWS0vLkW6CTNM3ooWi/4xmOQMKylLxLEb1oIKCgoKCgmI0QQ0qJDPgQYVA8vzLL78kWRIuX76MxYsXg8/n4+nTp9iyZQtSU1ORk5ODefPmyUQ422uvvYadO3fC2NgYWVlZ2LFjh8QscGvWrMF7770HGxsbcDgchIaG4t133yV5kAsQyL4LzpO84ePjQ3iR19TUICQkBCUlJSLLOjo6wtvbG8bGxqDT6aipqUF0dDTJQc3AwADBwcEwMTGBtrY2bt68Kbce5Pb29nB2doaamhoaGxuRnJwsMcLA0NCQCD0VhEn2joqxtbWFlZUVkS+AzWYjNTVV7kKZBfD5fFy8eBFRUVFoaWmBtbU1NmzYAHNzc7F1IiMjCWE2oCc/w6pVq0jJ/C5cuIB//vmHVI/FYuGnn36STkdGAD6fj5CQECQkJKCtrQ1jx47F8uXLxeYTAnqSqd28eROlpaWor6/H4sWLReYUiouLQ2RkJJqammBkZISlS5fCyspKmt0ZFqiQUsk819lRVVXFwYMHxWY37O7uhpqaGrZv345p06YNqoHDxYoVK3D48GF8/vnncHd3R1xcHEJCQsQ+mAICAvDHH3/g5MmTcHJywvLly+Ht7Y1ffvlFqOyYMWPw9ddfIzY2VtrdGBGcnZ0xe/ZsxMTE4NixYygpKcG6devEmnHHjh2LR48e4fTp0zh27BiKioqwdu1a0oNMSUkJDQ0NiIiIGLVCdEPBuHHjCLXIq1evorq6GtOnTxerv8BkMjF9+nRUV1fj6tWrSE9Px4QJEzB27FiijEAcLzQ0FDdu3EBLSwtmzJgBBoMxXN0aVq5evYqbN2/i5ZdfxhdffAEtLS188cUXEtPjZ2dnIyAgAB9++CE++eQT6Onp4YsvvhCaEJiZmeH48ePEJsi1Ii/cunUL0dHRWL58Od555x1oamrixx9/FMos2puOjg7o6upi/vz5QiGnAtLS0vDvv/9ixowZeO+992BlZYVjx46JnHBRyBfPNaiYNm0ajIyM8OWXX4r8Xl1dHceOHcOmTZtgZGQ0qAYOF2+//TZOnjyJkydPIjc3F2+99RZKS0vx2muviSzv6+uL4uJi/PDDDyguLsadO3fw008/wcvLi1SORqPhzJkz2Ldvn5AioLzg7++PtLQ0pKamora2FiEhIWhqaoKPj4/I8iEhIYiPj0d5eTnq6+tx69Yt1NfXw87OjihTXl6OsLAwPHz4kJRvQN5wcnJCQUEBCgoKwOFwkJycjNbWVtjb24ssb29vj9bWViQnJ4PD4RB1nZ2diTKxsbHIzc1FfX09OBwOEhISoKCgIHH2KasIZtqLFi2Cj48PzM3NsXXrVrS3t+POnTti673xxhuYMWMGLCwsYGpqis2bN4PP55O0Z4AeJVlByn0tLS2xL1FZhM/nIyYmBjNmzICbmxtMTEywdu1adHZ2SkxDPnbsWCxatAienp5iExRGR0fD19cX/v7+hJVCW1tbLvQ/qIyaknmuQQWdTscXX3yBH374YVApXUcLSkpK8PT0RHh4OGl/eHg4/P39RdZJSEiAmZkZZs+eDaDHXL9s2TJSxk0A+Oijj1BbW4tff/1VOo0fYQTy3X1j6wsLCyWan3ujoKAAZWXl/4TwWm9oNBp0dXWFUsFXVFQQmQv7oq+vj4qKCtK+8vJy6OnpiX1I0el00Gg0iVoYskpNTQ0aGxvh6upK7FNSUoKDgwPy8/P7fZz29nZ0dXUJWYiqqqrw2muv4Y033sB3330nN4mvgJ5lsaamJtIAVklJCVZWVoPSiOnq6kJpaanQwNje3l7mtWcAalDxLJ57cWjx4sUYP3489u3bN5TtGRH09PSgqKgo9MCorq4Wa2lJTEzE2rVrce7cOXR0dKC6uhqNjY144403iDL+/v545ZVXSIqt8sZQyHf7+/tDWVlZaJYo76ioqIBGowmZmtva2oTErgSoqakJDb6ePn0KGo0mJNstwMvLC1wuF5WVlUPT8FGEIPNo36U2Fos1IMG+v//+Gzo6OnBxcSH2WVtbY+vWrdi9ezc2b96MxsZGfPTRR3KzHCfInNnX+qKpqTkobaLW1lbweDyh+19DQ0Nuzh2FeAYV/XHw4EEEBwfjnXfeGXRDREmfDzei5LvFJRx1cHDA999/j08++QRhYWEwNjbG//73Pxw/fhwbN24Ek8nEn3/+iU2bNvVLpEje6I/0NNCjrxAcHIwzZ84MSh1RlhF1niSdu4EkwXV2doalpSVCQkLQ3d39XO0bTcTHx+PEiRPE5127dgEQ7ZHf35ng1atXcefOHXz00UdQVlYm9vfNCmpjY4M333wTsbGxmDt37vM0f0RJSUnBuXPniM+vvvqqyHJDlWS57/kfxcmbB4S8WhiGikENKiZNmoSZM2diz549eOmllwbVEFHS58NFXV0durq6hKwSBgYGYs2du3fvxp07d/D1118D6NFwaG1tRXx8PD744AMYGhpi3LhxJDEegddwZ2cn7Ozs5MLHQpx8t7q6+jPlu52dnbFo0SKcO3dOLs7FQGlvbwePxxOySqipqYl1lGtraxNyuFRVVQWPxxOq4+zsDFdXV4SFhcmNZLynpycpQqOzsxNAj8Witzomh8PpV76Ha9eu4fLly9i7dy/J2VUUqqqqGDNmjMxafFxcXEhKzAJfpaamJtK5am5uHpTviLq6Omg0mpC1YyDWy9EMFf0hmUGfnQMHDuDatWtISEgY1HFESZ8PFwLHpOnTp5P2T58+XWy/GAyGkJSvYCaooKCA3NxcODs7Y/z48cR29epVREdHY/z48SgtLZVOZ4YZgXx331AxKysriX10cXHBkiVLcPHixQGtfcsTPB4PbDYbJiYmpP0mJiaEGFtfamtrhcqbmpqirq6ONBN0dnaGm5sbIiIi5MpSpqamBiMjI2IzMzODlpYWSSytq6sLOTk5sLW1lXisa9eu4d9//8Xu3bv7FerY2dmJ8vJyIWlvWUFVVRX6+vrEZmRkBE1NTVI4cldXFx49eiQkiT4QFBUVYW5uLiT+l5ubO6jjUsgGg05+5eLigrVr1+KHH34g7c/OzkZHRwfq6+vR3NxMSIiPHz9e5HFESZ8PJ99++y1Onz6Ne/fuITExEZs3b8aYMWMIxdEvvvgCpqamWL9+PYCeB9KJEyewZcsWYvnj8OHDSEpKImYyWVlZpN8QrPH23S/rJCQkYOnSpaioqEBpaSm8vLzAYrGQnJwMoGdwpqmpScT8u7i4YOnSpUSsuyj5bjqdTiib0ul0aGpqwsjIiLim5IWsrCwEBgaCzWajpqYGdnZ2UFdXR25uLoCemTmDwSDktnNzc2Fvbw9vb2/k5+fDwMAANjY2iImJIY7p7OwMDw8PxMTEoKWlhbCEdHZ2yl0kjYKCAmbPno3Lly/DyMgIxsbGuHTpElRUVBAQEECU+/HHH6Gjo4PVq1cD6FnyOH/+PN544w3o6+sT96aqqirhm3L69Gl4enpCT08PHA4Hly5dQltbGyZNmjTs/ZQGCgoKmDx5MiIiIoiBRkREBOG4LuD06dNgsVhYsGABgJ6BR1VVFfE3h8NBWVkZVFRUiHt2ypQpOH36NMzNzTFu3DgkJCSgoaEBEydOHP6ODjHU8odkhiSj5qefforz58+T9s2ZM4eU/EiwPjla19XOnz8PXV1dfPTRRzA2NkZmZibmzJmDJ0+eAOiR+R0zZgxR/tSpU9DQ0MC2bdvwzTffoLGxEVFRUcQa73+JzMxMMBgMBAUFEfLdp0+fJqxNTCaTZF719vYGnU7H/PnzMX/+fGJ/WloaLl26BKDHqev1118nvps4cSImTpyIoqIiuYqkKSoqgoqKCtzc3MBgMIjcHAL/EjU1NVJEQktLCyIiIjBhwgQ4ODiAy+UiKSmJdK/Z29uDTqcjODiY9Fv3798nBvfyxIIFC9DR0YFff/0Vra2tsLa2xp49e0jLSnV1daSXQXh4OLq6unDo0CHSsZYuXYrly5cDAOrr6/HDDz+gqakJmpqasLGxwaeffkq8OOWBadOmobOzExcuXACXy8XYsWOxdetWktNvQ0MD6dxxOBx89dVXxOeoqChERUXB2toa27dvB9Cj8tva2oqwsDBwOBwYGxtjy5Yt0NHRGb7OUYwIo1r6nBoRDg5K++P5obQ/Boc4iyTFsxG39EXxbGbOnCn134iOjh6yY4nKRCrrUNofFBQUFBQU/YSa7EqGGlRQUFBQUFD0E2pQIZlRPagQl8yHon/0DfOk6D/y5tA43FDn7/kZSNIuiuGHGlRIhgq4paCgoKCgoBgSpCJ9fvv2bRw6dAjJycloamqCjY0Ndu7cibVr1w5p44eazZs346233oKRkRGys7Px3nvviRUl+vnnn7Fu3Tqh/dnZ2UQ4lqKiInbu3IkXXngBJiYmyM/PxwcffICIiAip9mMkcHd3h4+PD5hMJurq6hAZGSlWF0ZdXR3BwcEwNDSEjo4OUlNTERkZKfbYDg4OWLBgAfLz84noEHnCwcEBbm5uUFNTQ0NDA+7evUuE7InCyMgIvr6+0NbWBpfLRUZGBnJyckSWtbS0xNSpU1FcXCyX1x3QE1H277//Ijo6Gq2trbCyssJLL70EMzMzsXWio6MRFxdHkj5fsWIFKV/F1atXkZKSgsrKSigrK8PGxgYrV64UyhMi6zg5OcHKygpKSkqor69HamrqM9N0m5mZwdnZGUwmEy0tLXj48CFJw8bKygrW1tZE5BKHw0FWVpbE61pWoCwVkpGK9HlCQgJcXV3xzz//ICMjAxs2bMCLL75Iyi452li2bBn+97//4eDBg/D19UVCQgIuX74sVhTr3XffhYWFBbFZW1uDzWbj33//Jcrs378fGzduxNtvvw13d3f88ssvOHfuHNzc3IarW8OCvb09pk6disTERPz+++8oKyvD8uXLxWbPo9Pp4HK5SExMfKanu6amJqZMmSI3ycL6YmlpCT8/P9y/fx+XLl1CVVUVZs2aJVb6XENDA7NmzUJVVRUuXbqEBw8ewM/Pj5QpUQCTycSECRNkNgNkf7l+/TpCQkKwfv16fPLJJ9DS0sKBAwckCtTl5OTAz88Pe/fuxf79+6Grq4uDBw+ScqDk5ORg+vTp2L9/P3bt2oXu7m4cPHhQoiy4rGFvbw87Ozukpqbi1q1bePr0KYKCgsSqjwKArq4u/Pz8UFJSgrCwMJSUlMDf358ULtrW1oaMjAyEh4cjPDwcNTU1mDhxolyovFKCYpKRivT5nj178Omnn8Lf3x9WVlbYvn07Zs2aNapnmdu3b8fvv/+O33//HXl5edi5cyfKysrEioE1NTWhurqa2Dw8PKCtrY3Tp08TZdasWYOvvvoKYWFhKC4uxokTJ3Dr1i28+eabw9WtYcHb2xsZGRnIyMgAm81GZGQkmpubhbQTBDQ1NSEyMhJZWVkS9V4UFBQwf/58xMfHy+06s4uLC/Ly8pCXl4fGxkbcvXsXLS0tcHR0FFnewcEBLS0tuHv3LhobG5GXl4f8/HySSifQc+6mTJmCtLQ0uRZx4vP5CA0NxcKFC+Ht7Q1zc3O8+uqr6OjokJjld+vWrZg+fTrGjh0LExMTbNy4ETwej5SYbteuXZg0aRLMzMwwduxYbN68GWw2G8XFxcPQs+HB1tYW2dnZKC8vB4fDQVJSEuh0usSU5ba2tqiurkZOTg6am5uRk5OD6upqUgbTiooKVFZWoqWlhbBkdHV1QVdXdzi6RTGCDJv0OYfDGbWJT5SUlODu7i5kgo+MjISvr2+/jrF+/XpERUURybIAQFlZWaQCpTg5dVmERqPByMhISNK4qKgIpqamgzp2QEAAYd6XR2g0GvT09ISkz8vLy2FoaCiyjoGBgVD5srIy6Ovrk2Y+7u7uePr0qVCqZHmjtrYWHA6HpC6qpKQEe3t7FBQU9Ps47e3tIjVsesPlcgFArBVJ1lBXV4eamhppSYLH46G2tlbiy19XV1doGaOqqgp6enoiyysoKMDc3ByKiopykTKeslRIZlikzy9evIiUlBS8/PLLz/tzUkUgfd7XFF9dXS324d4bIyMjzJw5E7///jtp/61bt7B9+3ZYWVlBQUEBwcHBmDdvnlg5dVmEwWCARqMRD1wBra2tg3r4mpqawtXVFaGhoYNt4qhFVVVV5LmTJH3OYDCEzPpcLpckfW5oaAg7OzvExsZKp+GjCEnS5wPRDzp37hy0tbXh5OQk8ns+n48zZ87A1tZW7JKorCG4XvpOfJ4+fSox8k5VVbVfdVgsFpYsWYJly5bBy8sLd+7cGZSk+miBGlRIZlDRHwcPHsSpU6eQnZ0ttszt27fx0ksv4cSJE2JvWKBnptDU1ETahjvZ50Ckz3vzwgsvoLGxEVevXiXtf/fdd/Ho0SOkp6ejqakJhw4dwh9//CEXEtR9EXXunhdlZWXMmzcPoaGhEtfF/6tIOtdKSkqYMmUK4uLiJC4tySp37tzBK6+8Qmzi7qWBPDuuX7+OxMRE7NixgyR93ptTp06htLSUlDpe1hg7diyWLFlCbEOptinqfm9ubkZ4eDhu3bqFwsJC+Pj4yIVPhSzQ0NCAdevWgcVigcViYd26dRKXkDs7O7Fr1y64uLhAXV0dJiYmePHFF1FRUTHg35aq9HlMTAzmz5+Pb7/9Fi+++KLEY4mSPqfT6VBSUhpME/uFQPq8r1XCwMCgXylz169fj7///puQYe593BUrVkBFRQW6urqoqKjAZ599JldrslwuFzweT8gqwWAwCP2KgaKlpQUtLS0sXbqU2Cd4aO3cuRMnTpyQCx+Lp0+fgsfjCUmZq6mpiR1McblckeUF0ufa2trQ0NAgpSsWnLtXXnkF58+fl2kfCw8PD1KEhiAfBofDIamH9pXzFseNGzdw9epVvP/++yRtn96cOnUKaWlp+OCDD2TaJ6C8vJy0/CAYVPS1PIiyRPRGlFVCRUVFqA6Px0NLSwuAnpecjo4ObG1tce/evUH3hUIya9asQVlZGWHp3bx5M9atWyc2WILL5SItLQ0ffvgh3Nzc0NDQgB07dmDBggUD/n8NOvnVgQMHMH78eCGZ4du3b2PevHk4ePAgNm/e/Mzj7N69G2+//TZpn4GBwWCb1y86Oztx//59BAcHk6wNwcHBuH79usS6gYGBsLa2Flr66E17ezsqKiqgqKiIRYsWEWqd8gCPx0NVVRUsLCxIa9h9Pw8ENpuNkydPkvYFBgZCWVkZkZGRcmFCBXrOXV1dHUxNTUkDTVNTU5JAWG9qamqEXn6mpqaora0Fn88Hh8PBxYsXSd97eXlBSUkJiYmJzz3QGy2oqamRlob4fD5YLBYyMzOJCJiuri7k5uZi5cqVEo91/fp1XLlyBbt27RKp9cLn8/HHH3/g3r172Lt377A9j6RFV1cX8ZIX0NbWBiMjI2KQTqPRoK+vL9GPic1mw9DQEPn5+cQ+IyMj1NXVSfx9BQWFIbWOjBSjfdkiJycHoaGhuHv3LiZMmAAAOHHiBPz8/JCXlwc7OzuhOiwWSyjk/IcffoCPjw+ePHkidsAtCqlIn9++fRtz587Fm2++iaVLlxJOPcrKymKdNUVJnw/nP+/777/HyZMnkZaWhqSkJLzyyiswNzfHL7/8AgD45JNPCC/x3rz00ktITk4WuQTk7e0NExMTpKenw9TUFHv37gWNRsO33347LH0aLlJSUjBv3jxUVVWhoqICbm5u0NTUJBQxJ02aBA0NDdy4cYOoI3hAKykpQU1NDQYGBuju7gabzUZ3d7fQA0pgyn/Wg0vWePjwIYKCglBbW4uamhrY29uDyWQSeSe8vb2hrq6O27dvA+h5YDg6OsLX1xe5ubkwMDCAnZ0doqKiAADd3d1Cod4dHR0AIDYEXJZRUFDArFmzcPXqVRgaGsLIyAhXr16FsrIyySH6+PHj0NbWJgYa169fx8WLF7F161bo6emJlD7//fffkZiYiLfeeguqqqpEGQaDIXaZRNbIz8+Hg4MDmpub0dLSAgcHB3R3d5MGtRMmTACXy8XDhw+JOsHBwbC3t0d5eTlMTU1haGhIcnR3cXFBZWUluFwulJSUMGbMGOjr6/8n/HwGQnt7u9Aypah34UBITEwEi8UiBhQA4OvrCxaLhYSEBJGDClFwOBwoKChAS0trQL8vFenz33//HVwuF19++SUp7HTy5MnEw3G0cfHiRejo6GDPnj0wMjJCVlYWFi1aRERzGBkZCTloaWpqYtGiRXj33XdFHlNFRQX79u3DuHHj0NLSgrCwMLzyyisDciCTBXJzc6GmpoaAgACoq6ujrq4OFy5cICwKTCZTaC21t9OusbExnJycwOFwcPz48WFt+0jz+PFjqKiowMPDAwwGA/X19QgNDSVmlAwGg7S01NzcjNDQUPj5+cHR0ZHI9yFPS2oDZd68eejo6CCeO1ZWVti1a5dE6fNbt26hq6sL33//PelYixcvJpbdBC/Jzz//nFRm8+bNmDRpkrS6M6zk5uaCTqfD09MTysrKYLPZiImJIaVZZzAYJB8VNpuNxMREuLi4wNnZGa2trUhISCDl+FBVVYWvry9UVVXR2dmJxsZGxMbGorq6elj7Jw2GcrIratl/37592L9//3Mfs6qqSqRVzcDAoN/Jx54+fYr3338fa9asGbAfzKiWPhfnAU/RPwZzYf7XGa3hz7ICJX3+/Dx+/HikmyCzPGvJayhISkoasmONHz++35aK/fv3Cw1A+pKSkoLw8HCcOnVKKJzcxsYGr7zyCikTtig6OzuxfPlyPHnyBLdv3x7woGJUC4pRUFBQUFCMJobSUjGQpY5t27Zh1apVEstYWFggIyNDpEWotrb2mSkSOjs7sWLFChQVFSEqKuq5onWoQQUFBQUFBcUoR09PT2yCsd74+fmBw+EgOTkZPj4+AHqsKxwOR2LiRcGAoqCgANHR0c8d6TSqBxXU8sfgkKckW8MNnU4f6SbINJQJn0JeGe3RHw4ODpg1axY2bdqEn376CUCPH9C8efNITpr29vb48ssvsXjxYnR1dWHZsmVIS0vD9evX0d3dTfhf6OjoDMgxeVQPKigoKCgoKEYTo31QAQBnzpzB9u3bMWPGDADAggULcOTIEVKZvLw8ImigrKyMSKfQ1x8qOjoaQUFB/f5tqUif5+XlYcuWLcjOzgaHw4GJiQnWrFmDffv2DUsyq+dlw4YNeOONN2BoaIjc3Fzs2bMHd+/eFVn2yJEjWLNmjdD+3NxckSamJUuW4JdffsGNGzdESqbLOnZ2dnBycgKDwUBjYyOSk5MlJg4zNDSEt7c3tLS0wOVykZmZSYp719LSwvjx46Grqwsmk4nk5GSx8t6yjq2tLRwdHaGmpobGxkbcu3cPtbW1YssbGBjA09OTOHfZ2dlCOUHMzc3h5uYGDQ0NNDc3Iz09XW6VXgHpyHc7ODjAzMwMGhoaRJhzRkaGTCcPEwV17uQPHR0d/PnnnxLL9I7RsLCwGLIM1lKRPldSUsKLL76I8PBw5OXl4fDhwzhx4kS/dEJGisWLF+OLL77At99+i6CgINy9exfnz58XK4q1e/du2NvbE5uzszPq6+tx5coVobJmZmb45JNPJKomyjIWFhbw9vbGw4cPce3aNVRXV2PatGlitT+YTCamTp2K6upqXLt2DQ8fPoSPjw8pwQqdTkdzczNSU1OFtDHkibFjx8LT0xOZmZm4ceMGampqEBwcLJQ1U4C6ujqCg4NRU1ODGzduICsrC15eXqRwZz09PQQGBqKoqAg3btxAUVERAgMDZTobpCSkJd+tr6+PgoIC3Lp1CzExMaDRaJg8ebJcLY1R527gUNofkpGK9LmlpSVefvlluLm5YezYsViwYAHWrl2LuLi4QTVWmmzduhV//vknTp8+jfz8fOzZswcVFRXYsGGDyPLNzc2oqakhtvHjx0NLSwtnzpwhlaPRaPj5559x4MABuc0l4OjoiMLCQhQUFIDD4SAlJQWtra1ik6zY2tqitbUVKSkp4HA4KCgoQGFhIUkbhs1mIzU1FcXFxeDxeMPVlWHHwcEBjx49QmFhIZqamohBVN8MtQIE504wmywsLMSjR49IUun29vaorKxEVlYWmpqakJWVhaqqKjg4OAxXt4YVacl3x8bGori4GE1NTYT1TV1dXa7CjalzRzHUDIv0eWFhIUJDQzF58uTn+Tmpo6SkBDc3N0RHR5P2R0dHE96zz+KFF15ATEyM0Pl47733UFdX90xTlKxCo9EIXZPeVFRUQF9fX2QdAwMDkeX19PTkdvQuChqNBh0dHVRWVpL2V1ZWij13enp6Isvr6uoS505fX1+ojOD8yhvDJd8NgFi6FWQolXWoc0chDaQqfe7v7w9VVVXY2NggMDAQn3zyidiyI6lSqqurC0VFRaF17Jqamn7l+zc0NMS0adNw+vRp0v4JEybghRdewI4dO4ayuaMKFRUV0Gg0IQGsp0+fio3eESVY1NbWRpLv/i8g7txJkj4XJTbW99yJk6aWx2gqact392b8+PGora2Vm4y41Ll7PqjlD8kMKvrj4MGDCA4OxjvvvCPy+3PnzhFOYjt37sTXX3+N9957T2RZUelKVVVVh/VB+LzS56tXrwaHwyFpWzCZTBw/fhw7duwgpa+l6EHceR3FCV6Hjf5ed73LA/+NcyfwQREwlEuqkh7yHh4e0NLSIulbyBrUuRsa5HUwMFRIVfpc4Dzm6OiI7u5ubN68Ge+8845IZx1RKqWS1vWGEjabja6uLiGrhL6+vkQvfAFr167F+fPnSdLnFhYWGDt2LP766y9in0Chr6amBj4+PnLhY9He3g4ejyc0+FNVVRUr3y1q1iyQ7+6bslaekXTuxElPi7JiqKqqks6dqFmjpP+HLDHc8t1Az0vR1NQUUVFRMn0OqXNHMRwMWof2wIEDuHbt2jMjG/h8Pjo7O8XOplRUVKCpqUnahmtE2NnZifT0dKFY3KCgICQnJ0usGxAQACsrKyGfiYKCAgQEBGDy5MnEFhISgri4OEyePJkUfiXL8Hg8sNlsGBsbk/abmJiIHZDV1NTAxMREqHxdXd1/YrYtgMfjob6+XihJmZGRkdhzV1dXJ1Te2NgYbDabOHe1tbVC/w9jY2O5UHgVyHcLtqamJkK+W4BAvrv3C7QvAvnu3oiS7xa8FKOjo2VeNp46d0MDtfwhGalIn585cwZKSkpwcXGBiooKUlNTsXv3bqxcuVJiqNJIcvToURw7dgwPHjxASkoK1q9fD1NTU/z2228AgA8//BDGxsbYunUrqd4LL7yAe/fuCeVQaG9vF9onWE+Ut3wL2dnZmDhxIthsNmpra2Frawt1dXVC0EagwBkfHw+gRzrZ3t4eXl5eKCgogL6+PqytrUmyyDQaDSwWi/ibwWBAW1sbXV1dchXrnpOTA39/f9TX16O2thY2NjZQV1cn8k6MHz8eDAaDGLTn5+fDzs4Onp6exLmzsrIizi3QkytlxowZcHR0RFlZGczMzGBsbIywsLAR6aO0kZZ8t6enJ8aMGYP4+Hh0dXURs/POzk50d3cPbyelBHXuBo68DgaGCqlInysqKuLgwYPIz88Hn8/H2LFj8frrr+Ott94aip+TCpcuXYK2tjZ27twJQ0ND5OTkYOXKlUQ0h6GhIczMzEh1NDQ0MH/+fOzZs2ckmjxqKC4uhoqKCtzc3IgETpGRkcTsRE1NjZSzoqWlBZGRkfD29oa9vT24XC6Sk5MJmXlBnQULFhCfnZ2d4ezsjKqqKrl6OZaUlEBFRQUuLi7Eues9s+t77lpbWxEVFQUvLy/Y2tqira0N9+7dIyW2qqurQ3x8PNzc3ODm5oaWlhbExcVJnH3KMtKS77a2tgYABAcHk34vKSlJLpYuAercPQ/UoEIyo1r6nIppHhyHDh0a6SbILPKQpGckGc2Zcynkl+GQPs/IyBiyY7m6ug7ZsUYLo3MtgoKCgoKCYhRCWSokQw0qKCgoKCgo+gk1qJDMqB5UyKNpaDiZMGHCSDdBZqGkuwdHUVHRSDdBZpF1R0aK/zajelBBQUFBQUExmqAsFZKRivR5bwoLC+Hu7g46nY7GxsZBN1iaLFy4EKtWrYKuri6Kiopw5MgRIoyqL+PHj8fhw4eF9r/44otEFENgYCBeeOEFmJqagk6no7y8HOfOnUNERIQ0uzEi8Pl8nD17FmFhYWhtbYWtrS1effVVkvJoXxITE3HhwgVUVVWhq6sLJiYmWLhwIaZMmUKUycrKwqVLl1BYWIiGhgbs3r0bvr6+w9GlYYXP5yMsLAyJiYloa2vDmDFjsHTpUqF8E31JT09HSEgI6urqoKenhzlz5pAsfE+fPkVISAgePnyIlpYWmJqaYvHixRL/L7KGs7Mz3N3dwWAwUF9fj/j4eCHtk96YmJggICAAOjo6aG1txf3795GVlUV8v2jRIpHqxMXFxaSsufKAi4sLPDw8oK6ujvr6esTGxgrp8vTG1NQUgYGBxLlLTU1FZmYm8T2NRoOXlxccHBygrq6OhoYGJCQkkEJUKeSb57JUCKTPX331VWhra4st19nZidWrVyMwMHDUy35PmTIF27Ztw+HDh/Hw4UMsWLAAX331FdavX4+amhqx9V544QWSNHfvgVNzczNOnz6NJ0+eoKurC35+fnj//ffR2NiIlJQUaXZn2Pn3339x5coVvPnmmzAxMcH58+fx0Ucf4ejRo2JlvJlMJpYvXw4zMzMoKiri3r17+P7778FiseDh4QGg56VoYWGBqVOn4sCBA8PZpWElKioKt2/fxpo1a6Cvr4+IiAgcP34cu3fvFqupUFxcjD/++AOzZ8+Gi4sLHj58iFOnTmH79u1ENtpz586hsrISa9euhaamJlJTU3Hs2DHs2rULWlpaw9hD6WBtbY2JEyciJiYGVVVVcHJywvz58/HXX3+hpaVFqLyGhgbmzZuH7Oxs3Lp1C0ZGRpg8eTLa2tqIJa+QkBBS9I+qqipWrlyJR48eDVu/hgMbGxtMmjQJt2/fRkVFBZydnbFgwQL8+eefIs+dpqYmFixYgMzMTISFhcHExARBQUFoa2sjzo2vry/s7e0RGRmJhoYGjB07FnPnzsWFCxf6lZ2YQvaRivS5gA8++AD29vZYsWLFczVuOFm+fDlu3ryJGzdu4MmTJzhy5AhqamqwcOFCifUaGxtRX19PbL1luh88eID4+Hg8efIEFRUV+Oeff/Do0SO4uLhIuzvDCp/Px7Vr17B8+XL4+flh7Nix2LFjBzo6OkgJrfri4uICPz8/mJubw9jYGPPnz4eFhQUpOZinpydeeOEF+Pn5DUdXRgQ+n4+YmBhMnz4drq6uMDY2xpo1a9DR0YG0tDSx9WJiYmBra4tp06YRona2traIiYkB0KMImZGRgfnz58PKygr6+vqYNWsWdHR0Rv0gv7+MHz8eOTk5yMnJQUNDA+Lj49Hc3AxnZ2eR5Z2dndHc3Iz4+Hg0NDQQdd3d3Yky7e3t4HK5xGZmZoauri4UFhYOV7eGBXd3d2RlZSErKwsNDQ2Ii4tDS0uLWF82wbmLi4tDQ0MDsrKykJ2dTUwAAMDe3h737t1DSUkJmpqa8PDhQ5SUlJDOr6xDZdSUjNSkz6OionDhwgX8+OOPg2rgcKCoqAg7Ozsh60FKSgqcnJwk1j1x4gT++ecffPPNNxg/frzEsh4eHjA3N0d6evpgmzyqqK6uRkNDA+nBoaSkBCcnJ+Tm5vbrGHw+H+np6SgvL3/mOZc32Gw2mpubYWdnR+xTVFSEtbW1RIfH4uJiUh0AsLOzI5IL8Xg88Hg8oZwRSkpKcuGIKkgp3TtpGgCUlpYKpTIXYGRkREoUBgBPnjyBvr4+oYXRF0dHRxQUFJASQsk6NBoNBgYGQufuyZMnYpfcjI2NhcqXlJTAwMCAOHd0Ol3oPAmWNuUFalAhmed21OwtfX7y5EnSd2w2Gy+99BL+/PNPaGpq9ut47e3tQmJSPB5P7I0+lLBYLNDpdDQ0NJD2NzQ0iE3AxWaz8b///Q/5+flQUlLCjBkz8O2332LHjh2k5Cjq6uq4ePEilJSUwOPxcOjQIaSmpkq1P8ON4LwJ0moL0NLSkrh0BPRkiNywYQM6OztBo9GwZcuWZw7O5A1B2nENDQ3SfiaTKXRN9q3Xt46GhgaampoA9JjtLSwsEB4eDkNDQ2hoaCAtLQ1PnjyBnp7eEPdi+FFVVRUrHS9uyY3BYIgsT6fToaqqSlrKBAADAwPo6uoiKipqaBs/wqipqYFGown1l8vlSjx3osr3PndPnjyBu7s7ysvLweFwYG5uDktLy2F5jlOMDqQifb5p0yasWbMGkyZN6vexREmfjx07FhYWFoNp4oAQJX0ujtLSUtKMJzs7GwYGBli5ciVpUMHlcrFx40aoqanBw8MDr7/+OiorK/HgwYMhb/9wcfv2bRw7doz4/OGHHwIQPl98Pv+Zo3E1NTUcPnwYbW1tyMjIwK+//gpDQ0O5WyLqTWpqKimt/aZNm8SWfdb5E/V9731r167F2bNnsX//ftBoNJiZmcHDw0OshVEWGWhS4IGUd3R0BJvNfubgWJ4YyPnpe/3FxsYiODgY69atA9Cjd5STkwMHB4chbeNIIq8WhqFCKtLnUVFRuHr1Kr7++msAPRcpj8eDoqIifv75Z2zYsEHoWKKkz+fNmzeY5vUbDoeD7u5uIauElpYWKZ/9s8jOzsb06dNJ+/h8PqFIWlhYiLFjx2LNmjUyPajw8fEhmd0Fku+NjY2kc8jhcJ7pDEij0Qhzq6WlJUpLS3Hx4kW5HlQ4OTnh3XffJT4LzMXNzc0ka09LSwuYTKbY4/S2Sgjoa73Q09PDtm3b0N7ejqdPn4LFYuHUqVNykQL/6dOn4PF4QjNrNTU1oRm1AFEzcTU1NXR3dwtJdwuWoJ6lVCyLtLW1iTx3oiw5Avpz7tra2nDjxg3CetHa2gp/f3+h61SWoQYVkpGK9HliYiIePHhAbJ988gk0NDTw4MEDLF68WORxREmfD5fJrKurC3l5efDy8iLt9/LyIoWaPQsbG5t+iTYpKysPuI2jCQaDAWNjY2IzNzeHtrY2aaDU2dmJrKws2NvbD/j48rR2LQpVVVXo6+sTm5GRETQ0NAhVVwCEY+C4cePEHsfCwgL5+fmkfXl5eSKteyoqKmCxWOByucjNzRXryChL8Hg81NbWwtzcnLTf3NwcVVVVIutUVVUJlR8zZgxqa2tJTtZAT2QJnU4n/V/kBR6Ph5qaGqHQ4jFjxogNx62srBRZvqamRujcdXd3o7W1FTQaDdbW1nLhwyOA8qmQjFSkz/uauu7duwcajTaqH2QXLlzAnj17kJeXh6ysLMyfPx+Ghoa4evUqgB4TtZ6eHhHxsmzZMlRVVaGoqAhKSkqYPn06Jk+eTCwFAMCaNWuQl5eHiooKKCkpYcKECZg5c6bcCX0pKChg/vz5uHjxIoyNjWFiYoKLFy9CWVmZtAR26NAh6Orq4sUXXwQAXLx4EdbW1jAyMkJXVxdSU1MRHR2NLVu2EHXa2tpID7nq6mo8fvwYGhoa0NfXH75OShEFBQVMnjwZt27dIgYat27dgrKyMsmz/syZM2CxWIQFb9KkSThy5AgiIyPh7OyMzMxM5OfnY/v27USd3Nxc8Pl8GBgYoK6uDlevXoWBgYHcZFt98OABpk2bhtraWlRVVcHR0REaGhrEZMDX1xfq6uqELHdmZiZcXFwQEBCA7OxsGBkZwcHBAeHh4ULHdnBwQFFRkZCvl7xw//59zJgxAzU1NaisrISzszOYTCaRm8ff3x/q6upEXp3MzEy4ubkhMDAQmZmZMDY2hpOTE0JDQ4ljGhoagslkora2FkwmExMmTICCgoLc+ZFRiEcq0ueySHR0NDQ1NbF+/Xro6OigqKgIu3btQnV1NQBAV1cXhoaGRHlFRUW89tpr0NPTQ3t7O4qLi7Fr1y4kJSURZdTU1PDWW29BX18f7e3tePLkCT7//HNER0cPe/+kzZIlS9DR0YGffvoJLS0tsLW1xccff0wyl9bV1ZGsT0+fPsXx48fBZrOhrKwMU1NTvPXWWwgMDCTKFBYW4oMPPiA+//rrrwB6JJXffPPNYejZ8BAcHIzOzk5cvHgRbW1tGDt2LLZs2ULKUdHQ0ECa3YwbNw7r1q1DSEgIQkJCoKuri/Xr1xM5KoD/N0c3NjaCwWDAzc0Nc+bMkRsV1sLCQqiqqsLLywvq6upgs9m4du0a4fzKYDBIy0HNzc24fv06Jk6cCBcXF7S2tiIuLk5oJs1isWBiYoIrV64Ma3+Gk4KCAqiqqsLHx4c4d1evXhV77pqamnD16lUEBgbC1dUVLS0tiImJIeXvUFRUhJ+fHzQ1NdHZ2Yni4mKEh4ejo6Nj2PsnLeTVwjBUjGrp86CgoJFugkxz/PjxkW6CzCJP5tqRgNL+eH4o7Y/np7eVTloUFBQM2bFsbGyG7FijBSrOh4KCgoKCgmJIoATFKCgoKCgo+gm1/CEZalAhx0gSVaKQjCAMmOL5EKUdQdE/AgICRroJFBKgBhWSkYpKaXFxschQuJCQEMyaNWtwLZYilErp88Pn83H9+nXEx8eDy+XCwsICq1evlpiet6KiAteuXUNJSQnq6+uxfPlyTJ06VWz50NBQXL58GcHBwTKhJ9NfHBwc4ObmBjU1NTQ0NODu3btiQyKBnlTTvr6+0NbWBpfLRUZGBkkvpTeWlpaYOnUqiouL5fK6A3o0LHx8fMBkMlFXV4fIyEixyb3U1dURHBwMQ0ND6OjoIDU1lYgMEYWDgwMWLFiA/Px8XLp0SVpdGDH4fD6uXr2KmJgYcLlcWFpaYu3atSJVWgWUl5fj8uXLKCkpAZvNxqpVq4Ty87z33nsiw+unTJmCF154Ycj7QTF6kKpK6a1bt0g6DqM54Q6lUjo4wsPDERkZifXr18PAwAAhISH47rvv8PHHH4tV2ezo6ICenh48PDxw4cIFiccvLi5GXFycxIedLGJpaQk/Pz/cuXMH1dXVsLe3x6xZs3DhwgW0trYKldfQ0MCsWbOQm5uL27dvw9DQEAEBAWhrayM0PwQIQvrk2WJlb2+PqVOnIjw8HOXl5Rg/fjyWL1+OX375hYhi6A2dTgeXy0ViYiK8vb0lHltTUxNTpkwR0gqRJ0JCQhAeHo4NGzbA0NAQ169fxzfffIPPP/8campqIut0dHRAX18fXl5eOHfunMgyH374ISl3RXl5Ob755huhXEAU8odUVUp1dXVhZGREbKM56ROlUvr88Pl8REZGYvbs2XB3d4epqSnWr1+Pjo4OidkILSwssHTpUnh7e0NRUfz49unTp/j111/xwgsviNUlkFVcXFyQl5eHvLw8NDY24u7du2hpaYGjo6PI8g4ODmhpacHdu3fR2NiIvLw85OfnCylLKigoYMqUKUhLSxP5cpUXvL29kZGRgYyMDLDZbERGRqK5uVmsKmZTUxMiIyORlZUlMf+EIPdKfHw8aaIgT/D5fNy6dQtz586Fp6cnzMzM8Morr6Cjo4MUGt+XcePGYcWKFZgwYYLY+1ZDQwMsFovY0tPTYWBgICSAJ4tQya8kIzWVUgBYsGABDAwMEBAQgIsXLz53I6UNpVI6OOrq6tDU1ERKeqakpAQbG5shCc08e/YsnJ2d5Uo/AOhJUa6npyfkv1FeXk7KidIbAwMDofJlZWXQ19cnPaTc3d3x9OlTucwGKYBGo8HIyEgofLWoqGjQFq2AgABiaUleqaurA4fDIT3jlJSUYGdnR8o9MVi6urpw9+5dTJw4UW5fpBT/j1RUSplMJr799lsEBASARqPh6tWrWLlyJU6dOjUq19MoldLBIcjr31eRVlNTc0DaKaJISUnBkydPsHv37kEdZzQiUNnsq1PR1tYm1vTMYDCEBvJcLhc0Gg2qqqpoa2uDoaEh7Ozs8O+//0qt7aMBBoMh8vy1trZCXV39uY9ramoKV1dX/Pbbb4Nt4qiGw+EAEH3f9kduoL/cv38fXC4X/v7+Q3bMkYQaGElGKiqlenp6eOutt4jPXl5eaGhowFdffSV2UDGS0ucCKJXS/pGUlIS//vqL+Pz6668DEK1SOhjq6+tx/vx5vPnmm1BSUhrUseQJSdepkpISpkyZgri4OLlNL92Xgdy3z0JZWRnz5s1DaGioWGEtWeXu3bv4448/iM+CjLTPoy48EOLi4uDi4iLR/06WoAYVkpGKSqkofH198csvv4j9fiSlzymV0oHh5uZGiu4RCIBxOBySymZzc7PQLGggPHnyBM3Nzfjiiy+IfTweD4WFhbh9+zaOHDkyrIPOoUaSyuZAlSJ5PB6ePn0KbW1taGhoYObMmcT3gofgK6+8gvPnz8uNjwWXywWPxxOySjAYDJFOrv1BS0sLWlpaWLp0KbFPcP527tyJEydOyKyPhZubG/bt20d87n3f9lYTHux925u6ujpkZ2cTEw8K+WfQeSoOHDiA8ePHw9bWVmK5+/fvExLXohhJ6fPeKqXx8fHEfi8vL9y5c6ffx/mvqJSqqqqSIjr4fD40NTWRk5NDqBh2dXWhoKBArCptf7C3tycJtAHAH3/8ASMjI8yYMUOmBxRAzwCprq4OpqampMgNU1NTlJSUiKwjSlnS1NQUtbW14PP54HA4Qv5LXl5eUFJSQmJi4nO/bEcjPB4PVVVVsLCwIKVO7vt5ILDZbKHl3MDAQCgrKyMyMlKmJbzV1NRIy2p8Ph8sFgvZ2dmEXozgWbhs2bIh+c07d+5AU1NTyJGYQn6RikrpqVOnoKSkBHd3d9BoNFy7dg3ff/89Dh48KPY4KioqUFFRIe0bzpcGpVL6/CgoKGDq1KkIDQ2FgYEBDAwMEBoaCmVlZfj4+BDlfvvtN2hpaREDja6uLiLcsbu7G42NjSgtLYWKigoMDAygqqoq5HCnrKwMdXV1uQktffjwIYKCglBbW4uamhrY29uDyWQSeSe8vb2hrq6O27dvAwBycnLg6OgIX19f5ObmEh71UVFRAHrOY1/fIIGYU9/98kBKSgrmzZuHqqoqVFRUwM3NDZqamoQlcNKkSdDQ0MCNGzeIOgYGBgB6lorU1NRgYGCA7u5usNlsdHd3o66ujvQbgmWkvvtlHQUFBUybNg03btyAoaEhDAwMcPPmTSgrK5NUbH/55Rdoa2sT1puuri5UVFQQfzc0NODJkydQUVEhORjzeDzEx8fD399fbgTsAGr541lITaX0s88+Q0lJCeh0OmxtbYmQwNEKpVI6OGbMmIGOjg78/fff4HK5GDduHLZv306yaNTX15NuyMbGRnz++efE54iICERERMDGxkbIT0deefz4MVRUVODh4QEGg4H6+nqEhoYSGSkZDAbJvN/c3IzQ0FD4+fnB0dGRyLnQN0fFf4Xc3FyoqakhICAA6urqqKurw4ULFwiLApPJFDLlv/zyy8TfAvluDofznxTgmz17Njo7O/Hnn3+itbUVlpaWePvtt0kWDVH3be+l6rCwMISFhcHOzg7vvfcesT87Oxv19fWYOHHi8HRmmJCFQUVDQwO2b99OTIoXLFiAH374gbTMJYlXX30VP//8Mw4dOoQdO3YM6LcplVI5pvf6KcXAKCwsHOkmyDSDjfr5L0Ol6X5+hmMAI8iYPBT0XcocKmbPno2ysjL8/PPPAIDNmzfDwsIC165de2bdy5cvY//+/aitrcXOnTsHPKigtD8oKCgoKCjkhJycHISGhuLu3bvEMtaJEyfg5+eHvLw8iQnIysvLsW3bNoSFhWHu3LnP9fvUoIKCgoKCgqKfDOXyh6hUCqL8CwdCYmIiWCwWyS/G19cXLBYLCQkJYgcVPB4P69atw86dO5+Z9FESo3pQ8awwVQrJCJz7KAaOmZnZSDdBpqHO3/PT28+IYmCEhISMdBMGhKhUCvv27cP+/fuf+5hVVVWEM3JvDAwMJAoVHjx4EIqKiti+fftz/zYwygcVFBQUFBQUo4mhtFSISqUgzkqxf/9+oQFIXwRSE6LaKCmpWWpqKr777jukpaUNun/PNagoLS3F/v37ERISgrq6OhgbG2PRokX46KOPoKurCwD4999/8dNPPyE1NRVsNhv3799/pjbGSGNnZwdnZ2cwGAw0NDQgOTlZokKpoaEhvL29CQnqzMxMktaCjY0NrK2tCY9bNpuNtLQ0uQtNA3pCHwMCAsBkMlFbW4uQkBCxDk1MJhMzZ86EiYkJdHR0kJSUhNDQUFIZGo2GwMBAjB8/HhoaGmCz2YiIiJBLB0pK+nzwuLi4wNraGsrKymCz2UhJSSHSUIvD3Nwcbm5uYDKZaGlpwYMHD0gp0A0MDODg4AAdHR0wGAzExMRI1DqSRebOnYtly5ZBR0cHJSUl+Omnn5CVlfXMeo6Ojvjqq69QXFyMbdu2EfvpdDpWrlyJadOmQVdXF2VlZfj111/lSppgKAcVA1nq2LZtG1atWiWxjIWFBTIyMoioxd7U1taK1RSKi4sTyoHT3d2Nd955B4cPHx5QdNmAE0E8fvwYXl5eyM/Px99//43CwkIcP34ckZGR8PPzI7y+W1tbERAQgAMHDgz0J0YECwsL+Pj4ICMjA1evXkVNTQ2mT58uVkOAyWRi2rRpqKmpwdWrV5GRkQEfHx8iiQzQ8/B//PgxwsLCcPPmTbS2tmLGjBlyp7Tp5OSEWbNmITY2FsePH0dJSQleeOEFUnbN3igqKoLL5SI2NlbkxQ8AU6dOhZeXF27evIkff/wR9+7dw6pVq2BkZCTNrgw7Aunz+/fv49KlS6iqqsKsWbPEXncC6fOqqipcunQJDx48gJ+fn8jMs/8F6XOg5wXn4OCAe/fuEem1g4ODJSrf6unpYeLEiSgqKsLNmzdRVFSEwMBAYlIE9FynjY2NuHfv3nB0Y9iZNGkSXn31VZw9exbbtm1DVlYWPv30U+jr60usx2Aw8O6774rMCrx+/XrMnj0bx44dw6uvvoqbN2/iww8/hJWVlZR68d9BT08P9vb2EjdVVVX4+fmBw+GQFKKTkpLA4XDE6q+sW7cOGRkZePDgAbGZmJhg586dCAsLG1A7BzyoeP3116GsrIzw8HBMnjwZY8aMwezZs3Hr1i2Ul5dj7969RCM/+ugjTJs2baA/MSI4OTmhoKAABQUFxD+ktbVVrFOLnZ0dWltbkZycDA6Hg4KCAhQWFpIcXOLi4pCXl4f6+npwOBwkJCQAgMTMorKIv78/7t+/T1hhQkND0dTUBG9vb5HlGxsbERISgvT0dDx9+lRkGVdXV8TFxaGgoAANDQ1ISUlBYWGh3IgSCaCkzwePvb09MjMzUVpaCg6Hg8TERCgqKkpM8W9vb4+qqipkZWWhqakJWVlZqKqqgr29PVGmoqIC6enpJI0feWLx4sUIDw9HWFgYSktL8dNPP6G2tvaZXv/bt29HdHS0SOtYcHAwzp07h5SUFFRVVeHGjRtITU3FkiVLpNUNij44ODhg1qxZ2LRpE+7evYu7d+9i06ZNmDdvHul9Zm9vj0uXLgHoycPk7OxM2pSUlGBkZDRgufoBDSrq6+sRFhaGrVu3CqkoGhkZYe3atTh37tyghaSGGxqNBl1dXSJLnICKigqRDi8AoK+vL1S+vLwcenp6Ys1jdDodNBpNroSe6HQ6jI2NhZYlHj16BHNz8+c+rqKiIqFNIKCrq0tqcd0jASV9PniYTCbU1NRI1hgej4fq6mqJM249PT0hC05lZeUzZ+nygqKiImxsbJCWlkban5aWJnZACwDTp0+HsbExzpw5I/J7JSUlIoOrgI6OjkFFE4w2FBQUhmyTFmfOnIGLiwtmzJiBGTNmwNXVFadPnyaVycvLe+YS4fMwIJ+KgoIC8Pl8ODg4iPzewcEBDQ0NqK2tFfsyHo2oqKiARqMJiThJkqAWJfrU1tZGkqDui6enJ7hcrlyZoxkMBuh0upCmREtLC5hM5nMft7CwEH5+figuLkZDQwPGjRsHOzs7mdf76A0lfT54BBlb+1q8nj59KlH+XFVVVWSd3hlg5RlNTU3Q6XSh1O2NjY1i1URNTEzw8ssvY+fOneDxeCLLCKwSmZmZqKysxPjx4+Hr60ul6R5mdHR08Oeff0os86zJ//Nm6R3S6A9BI5/npIuK1+3s7BxRyeuB9kNSeWdnZ1haWiI0NBTd3d2DbdqoQ5T89GAsViEhIViwYAHeeOMN8Pl8NDQ04MGDB6Pe2Xc4+C9Lnwt8nwQIwqafR/5c1iyq0qC/9y2NRsOuXbvw559/ClnKevPTTz9h+/btRCbHyspKRERECKk3U8gvAxpUWFtbQ0FBAdnZ2Vi0aJHQ97m5udDW1oaent6AGyIqXnfhwoUif2eoaW9vB4/HE5odirM4AKJnk6qqqoQEdW+cnJzg6uqKsLAwuRN14nK56O7uFrJKqKurD0oRk8vl4uzZs1BUVISamhqam5sxffp0mZWdFgUlfT5wysrKSNFTghmwmpoa6b5TUVER668D9Jx7UfevpDryRFNTE7q7u6Gjo0Paz2KxRN5jampqsLW1hZWVFbZu3Qqg57qi0Wi4fv069u7di/T0dHA4HHz66adQUlKCpqYm2Gw2NmzYINYhWxaRBUvFSDKgQYWuri6mT5+Oo0eP4q233iLdlFVVVThz5gxefPHF5zrpouJ1z507N+DjPA88Hg9sNhsmJiakMMi+n3tTW1sr5DNgYmKCuro60kjfyckJbm5uiIiI6JcsuqzR3d2NyspKWFlZITc3l9hvaWk5JOv5XV1daG5uBo1Gg4ODQ7/C3WQFSvp84HR1dRFiawLa2tpgbGxMDNhpNBoMDQ1x//59scepq6uDkZER6Zo1NjZGbW2tdBo+yujq6kJBQQHc3d0JB3IA8PDwQGJiolB5LpeLLVu2kPbNmzcPbm5u+Pzzz4VCoDs7O8Fms0Gn0xEQEIDY2FjpdIRi1DHg5Y8jR47A398fM2fOxGeffYZx48YhKysLO3fuhKmpKZENrr6+Hk+ePCGcGQUvGCMjI5FhgaLidYdz6SMrKwuBgYGoq6tDbW0tbG1toa6uTrRboCIZHx8PoKc/9vb28Pb2Rn5+PvT19WFjY0O6eZydneHu7o7Y2Fi0tLQQg7DOzk4hJ0RZJiEhAUuWLEFFRQVKS0vh5eUFFotFJGKZNm0aNDQ0CE9jAMQ1IJAyNzIyQnd3N/FQNzU1haamJqqqqqChoYEpU6ZAQUEBd+7cGf4OShFK+nzw5ObmwsnJCU1NTWhuboazszO6urpIAzU/Pz+0tbURYZC5ubmYPn06HB0dUVZWBjMzMxgZGSE8PJyoo6ioCA0NDeIzk8mEtrY22tvbhfxgZJFLly7h3XffRUFBAXJycjB79mzo6+vj5s2bAHoyGuvq6uKbb74Bn88XGug2Njaio6ODtN/Ozg66urp4/PgxdHV18cILL0BBQUFooEshvwx4UGFjY4N79+5h//79WLlyJdhsNoyMjLBo0SLs27ePMKddvXqVJDEsSNox2BSk0qK4uBgqKioYP348kYTo1q1bxMyOwWCQTPwtLS24desWfHx8YG9vDy6Xi+TkZNINZm9vDzqdjilTppB+SxAHLC9kZWWBwWBg8uTJ0NDQQE1NDc6cOUN4FjOZTKGcFa+99hrxt6mpKVxdXdHQ0IDDhw8D6HmgBwcHQ1tbGx0dHSgoKMC///4rd+ZpSvp88GRnZ4NOp8PHxwfKysqoq6tDVFQUaeCurq5OsiDW1dUhPj4ebm5ucHV1RUtLC+Lj40nWRB0dHZIvgKenJ4CeyKa7d+8OQ8+kS2xsLDQ0NLBmzRro6OiguLgYH330EZHwT0dHZ8AO98rKyli/fj2MjIzQ1taGlJQU/O9//5N5C1lvqOUPyYxq6fPff/99pJsg0xQVFY10E2QWSrticMhbgrfh5Fle+xTiGQ7tD0lZlgeKLEVJ9hf5ic+joKCgoKCgGFGoQQUFBQUFBQXFkDCqVUr/y+vEQwFlwn9+/iuZFaXF48ePR7oJMgu1/DG6oXwqJENZKigoKCgoKCiGBKlIn3d2duKDDz7AzZs38fjxY7BYLEybNg0HDhyAiYnJUPdhyPD29oa/vz8RwRAaGvpM+W5jY2Po6upKlO92c3ODpqYm6urqcOvWLUq+G5R8d1/4fD5u3bqFpKQktLW1YcyYMVi4cOEzVVkfPnyI8PBwsNls6OrqYubMmXB2diaV4XA4CAkJQV5eHjo7O6Gnp4dly5bJjSXLzc0NXl5eUFdXB5vNxu3bt8VmfVRXV8fkyZNhYGAAbW1t3L9/nwjXFaCrqwt/f38YGBiAxWIhOjpaYs4LWYbP5+PkyZO4evUqmpqa4OTkhHfeeQeWlpb9qh8REYF9+/YhMDAQBw8eJPZ3dXXh5MmTxLWpp6eHOXPm4KWXXpL5VPuUpUIyUpE+53K5SEtLw4cffoi0tDT8+++/yM/Px4IFC6TRhyFBIN8dFxeH48eP48mTJ8+U725tbUVcXJzYl2dwcDA8PT0REhJCyHevXLmSku+m5LuFiImJQVxcHBYtWoQ33ngDTCYTv/zyi8RU2yUlJfjrr7/g4eGBHTt2wMPDA2fOnCENhLlcLo4dOwYajYYNGzbg7bffxrx588Rqi8gatra2CAoKQlJSEpFCevHixaT8Er2h0+ngcrlISkoSm+hKUVERHA4H8fHxQom25I0///wTZ8+exdtvv42TJ09CR0cHO3bs6FcIaGVlJY4cOQI3NzeRx718+TLefvtt/P3339i6dSv++usvXLhwQRrdGFZkQVBsJJGK9DmLxUJERARWrFgBOzs7+Pr64ocffkBqaqrYmf9I4+fnh7S0NJJ8N4fDgZeXl8jyjY2NCA0NRXp6utgHv5ubG0m++969e3j06BEl303Jd5Pg8/mIj49HcHAwnJ2dYWRkhJUrV6Kzs1PiDDk+Ph7W1taYMmUKDAwMMGXKFFhbWxMJ2oCewQqLxcKKFStgbm4OHR0dWFtbQ1dXdzi6JnU8PT2RmZmJzMxM1NfX4/bt22hubhb5ogN60lPfvn0bOTk5Yu/b6upqxMbGIi8vTy51egTw+XycP38e69evR1BQEKysrPDhhx/i6dOnz7QIdnd34+OPP8bGjRthamoq9H1mZiYCAwMREBAAY2Njm2fxPAAAMhdJREFUBAcHw8fHh5TBlEI+GTbpcw6HAwUFBWhpaQ2qwdKATqfDxMQEjx49Iu0frHw3nU4XypzZ2dlJyXdT8t0k6uvr0dzcDBsbG2KfoqIiLC0txabrBnosFba2tqR9tra2pDrZ2dkwMzPDn3/+iU8++QTfffcdkpKShr4TI4AgHXffc1RSUjKql1lHCxUVFWCz2SSBNmVlZYwfPx4PHz6UWPe3336DlpYW5s+fL/J7V1dX3Lt3j5hEFhQUID09HX5+fkPXAYpRybBInz99+hTvv/8+1qxZA01NzcG1WAowGAzQaDQhk19ra+ug5LsfPXoEPz8/lJSUEPLd9vb2cmX2ouS7B4/ACtPXZM9kMiWm1hYlL89kMklWnfr6ety9exeBgYGYMmUKSktLcfXqVSgqKhIZImUVNTU1kfetKNE1CmHq6+sBQEhUTEdHR6I/VEZGBq5du4ZTp06JLbNu3Tq0trZi9erVoNFo4PF4ePXVVzFjxoyhafwIIk/Pb2kgdenzzs5OrFq1CjweD0ePHhVbV5T0eVdXFxQVhy/qdaiTiwrku7dt2wag5ya+f/8+3N3dh/R3ZJH/snz3/fv3SYOl3unse8Pn85/5ABP1fe99fD4fpqammDVrFoCelOjV1dW4e/euzA8qKAZGWFgYvvrqK+Lz119/DUD4GpJ03bW2tuLjjz/G+++/L9HqfOvWLYSFhWH//v2wtLREfn4+vvvuO8JhU5ahBhWSkar0eWdnJ1asWIGioiJERUVJtFKIkj6fPHkygoKCBtLE54LL5YLH44mU7x6Mo5Yo+e5p06bJlbATJd89cBwdHUnLaoIlsubmZtI98ixLWV+rBCBsvdDQ0BBahjIwMEBmZuag+jAaaGtrA4/HE3IIZjAYciH4NdRMnDgRTk5OxGeB0JwgOkNAQ0ODkPVCQHl5OSorK/Hee+8R+3g8HgAgMDAQf//9N8zMzPDjjz9i3bp1hHaKlZUVqqqq8Mcff8j8oIJCMlKTPhcMKAoKChAdHf1MxzBR0ue9R9XSpLu7GxUVFULy3X0/Py+95bsdHR0p+e7/uHx3X0VePp8PDQ0NFBQUEE5vXV1dePz4MWbPni32OGPHjkVBQQECAwOJffn5+Rg7dizx2cLCQijKoa6ublT6Ng0UHo+H6upqjBkzhhSmPXbsWCH/KIqeSVLvARifz4euri5SUlJgZ2cHoGci+ODBA2zdulXkMcaOHYvTp0+T9v3888/gcrnYsWMHMYB9+vSp0IyeTqcPuTWYYvQhFenzrq4uLFu2DGlpabh+/Tq6u7uJNTodHR0oKysLHVeU9PlwLn0kJiaS5Ls9PT3BYrFw7949AMDUqVOhqakpVr6bwWA8U747KCiIku8GJd/dFwUFBUycOBHR0dHQ09ODnp4eoqOjoaSkRFoqO3fuHDQ1NYmBRkBAAH766Sfcvn0bjo6OyM7ORmFhIUkBduLEiTh69CiioqLg6uqK0tJSJCUlYenSpcPeT2mQmpqK2bNno7q6GpWVlXBxcYGGhgbS09MB9PSfyWSScsgIsqUqKSlBTU0N+vr66O7uJnwMaDQaMQmi0+nQ0NCAvr4+Ojs70djYOLwdlCIKCgpYsWIF/vjjD5ibm8PMzAx//PEHVFVVSeqsn3zyCfT19fHaa69BRUUFVlZWpOMIfIF67584cSJOnToFQ0NDYvnj7NmzmDt37vB0TopQyx+SkYr0eXFxMa5evQoAGD9+PKl+dHT0sCxpDJTe8t1MJlNIvltDQ0MoZ8WWLVuIv01MTODq6orGxkaJ8t2XLl2i5Lsp+W4hJk+ejM7OTly+fBltbW0wNzfHxo0bSQPtxsZG0gPNwsICq1evRnh4OMLDw6Gjo4O1a9eSrEDm5uZ48cUXERoaisjISGhra2P+/Ply49eTn58PNTU1+Pr6EsmvLl26RCwLqaurCznArlu3jvjbyMgIDg4O4HA4OHnyJICeZaXeZby8vODl5YXS0lK5yLPQmxdeeAHt7e34+uuv0dzcDEdHRxw6dIh0v1ZXVw84YdVbb72FEydO4Ouvv0ZDQwP09PSwcOFCbNiwYai7QDHKGNXS5/v37x/pJsg0ouLHKfoHpf0xOCjtj+dn/fr1I90EmWU48q8IJppDgbjkirKMbOdLpaCgoKCgoBg1UIMKCgoKCgoKiiFhVEufGxsbj3QTZBqBsxrFwJk0adJIN0GmGUzSuP86vUOpKQaGwLFemlCOmpKhLBUUFBQUFBQUQ4JUpM+BHifLs2fPorS0FMrKyvD09MTnn3+OCRMmDGkHhhJHR0e4ubmBwWCgoaEBCQkJEtPVGhsbw8/Pj5DvfvDgAUm+29bWFlOmTBGq98svv8idUFFgYCCmTp0KFouFyspK/PPPP2JzBVhaWhKy3kpKSqivr8edO3cQHR1NKjd+/HjMnTsXenp6qKurw7Vr15CRkTEc3RkRnJycYGlpSZyTtLQ0NDU1SaxjamoKZ2dnMJlMtLS0IDMzk6SrYmVlBSsrK8Kbn8PhIDs7W+J1LWs4OjrC1dWVuG8TExOfed/6+voS9216errQfSsqQu3kyZNyd98uW7YM69atg56eHh4/foxvvvkGDx48EFnW09MTP/30k9D+pUuXknLSrF69GsuWLYOhoSEaGxsRFRWFI0eOEGHhsg5lqZDMgAcVjx8/hp+fH2xtbfH333+T8lSEhITg7t270NHRga2tLY4cOQJLS0u0tbXh0KFDmDFjBgoLC0elZ72VlRX8/f0RHx+PqqoqODo6Ys6cOTh//rzIrJoaGhqYPXs2cnNzERUVBSMjI0ycOBFPnz5FUVERUa69vR3nzp0j1ZW3B5OHhweWLl2Kc+fO4fHjx5g4cSK2bt2Kzz77TGReiY6ODsTGxqK8vBwdHR2wsrLCqlWr0NHRQeTwGDduHF5++WXcuHED6enpcHNzwyuvvIJvv/1WosiWrGJvbw9bW1skJycToX2TJ09GSEiIkCidAF1dXfj5+REDCVNTU/j5+SEqKorIucDlcpGRkUFcwxYWFggICEBERMQzByyygKWlJfz8/BAfH4/q6mo4ODhg9uzZOH/+vMgkaRoaGpg1axZyc3MRHR0NQ0NDkfdtR0eH3N+306dPxzvvvIMDBw4gPT0dS5Yswffff4/ly5ejurpabL0lS5aQzm3ve3zWrFnYtm0bPvnkE2RkZGDMmDFEFN+3334rtb5QjB6kIn0OAGvWrMG0adNgaWkJJycnfPvtt2hqahq1M00XFxfk5uYiNzcXjY2NSEhIkCjf7ejoiJaWFiQkJKCxsRG5ubnIy8sTKbnc1tZG2uSN4OBgJCYmIjExEdXV1fjnn3/Q0NBAyvTYm7KyMqSmpqKqqgr19fVISUlBTk4OKXlOUFAQcnNzER4ejurqaoSHhyMvL0+k5UcesLGxQU5ODsrLy9HU1ITk5GTQ6XSJirY2Njaorq5Gbm4umpubkZubi+rqapJyaWVlJaqqqtDS0kJYMrq6uuRG+tzV1RV5eXnIy8tDY2MjEhMTJd63Dg4OaGlpQWJiIhobG4m6rq6upHJ8Pl/u79u1a9fiypUruHLlCoqLi/Htt9+iuroay5Ytk1ivvr4ebDab2ARpuoGe/0d6ejrCwsJQWVmJpKQkhIWFiRWhpJA/hkX6vKOjAz///DNYLJbIl+5IQ6PRoK+vL6ScWVZWJla+29DQUKh8aWkp9PT0SIlilJSUsGbNGqxduxazZs2Sm4e5ADqdDnNzc5L5GOjJmjlu3Lh+HcPMzAyWlpYoKCgg9o0bN04oRXpOTg4sLS0H3+hRhrq6OtTU1Egmex6Ph9raWpImQ190dXWFZpTV1dVirzEFBQWYm5tDUVERbDZ7aBo/gtBoNOjp6Q36vi0rK4O+vr6QqN3q1auxZs0azJw5U+7uW0VFRdjb2+Pu3buk/Xfv3hUaYPXlzJkzCA0NxdGjR4VE6R48eAAHBwdCY8TU1BQBAQGIj48f2g6MIAoKCkO2ySNSlT6/fv06Vq1aBS6XC2NjY0RERIh9SIpSKe3s7ISSktJAmvhcCOS7+85G2traxEooixLMamtrA51Oh6qqKrhcLhobG3H79m2w2WwoKyvDxcUFCxcuxMWLF+XC9Az0ePnT6XQhYau+4lii+PTTT4n6N2/eRGJiIvGdpqamyGP2zY4oD6iqqgKAUKbVp0+fColl9a0nqo7geAJYLBaCg4NBp9PR1dWFO3fuyMX1N5T3LY1Gg6qqKtra2oj7tr6+HsrKynB2dpa7+1ZLSwuKiorEMpmA+vp6sc/ouro6fPbZZ8jJyYGysjLmzJmDY8eO4dVXX8X9+/cBAOHh4dDW1sYvv/wCBQUFKCoq4sKFCxJl0inkC6lKn0+ZMgUPHjxAXV0dTpw4gRUrViApKQkGBgZCdUWplM6dOxfz588fyiYOGEkJR8V9J9hfU1ODmpoaYn9VVRWWLl0KZ2dnJCQkDG1DRxkKCgrPFA86fPgwVFRUYGFhgYULF6K2thapqanE96M42eugGDNmDGmGJ24W159z2J9z1NzcjIiICCgpKcHMzAw+Pj64ffu23Lwg+56Dwc4ARd23S5Yskcv7VtS5E3dNlZSUkPyZHj58CENDQ6xbt44YVHh6euLll1/GgQMHkJmZCXNzc7z77ruoq6sj0qBTyDdSlT5XV1eHtbU1rK2t4evrCxsbG5w8eRK7d+8WqitKpfSPP/4YSPOeG4F8d98lHUny3aJmQ2pqauju7hayuPSmtrZWrlKztrS0oLu7W8iCIEqWuy8CE3xFRQU0NDQwZ84cYlDR1NQkZOnQ0NCQaclzARUVFaQZomC5rK/lQUVFReK19PTpU6FrVpT1gsfjEY6aAllrGxsb0gBOFhHct33vQ4GlUBRtbW0i73MejydRk6e2tvaZljdZorGxUaRvjba29oCWxjIzM0lKulu2bMHNmzdx5coVAMCjR4+gpqaGvXv34tdff5WLiYK8LlsMFQPyqegtfd73ZSuQPl+5cqXYk87n88U+JFVUVKCpqUnahmPpA/j/9WszMzPSfjMzM7Fe0NXV1SLL19XVkRyX+qKrqyv2gSeLdHd3o7S0FPb29qT99vb2JG/6ZyEwlQooKioSeUx50JTo6uoiHCdbWlrQ1NSEtrY2kh+AwM+nrq5O7HHYbLaQ74ChoWG/XgoDFYgajfB4PNTV1Qlp3DzPfVtbWyvxhaerqytXzppdXV3Izc0VCvGfMGHCgJzp7ezsSNeoqqqq0HkUPA+pl/F/gwE/WY4cOYL29nbMnDkTsbGxKC0tRWhoKKZPn05In7e2tmLPnj24e/cuSkpKkJaWho0bN6KsrAzLly+XRj8GzcOHD2Fvbw87OztoaWnBz88PTCYT2dnZAAAfHx9S5EF2djaYTCb8/PygpaUFOzs72Nvbk7JYenp6wszMDBoaGtDV1cXkyZOhq6tLHFNeiIqKgr+/P3x9fWFoaIglS5ZAR0cHcXFxAIAFCxaQVB8nTZoEZ2dn6OvrQ19fH76+vpg6dSpSUlKIMrdv34a9vT2mTZsGQ0NDTJs2Dfb29kK5LOSFgoICODg4wNTUFJqamvD29kZ3dzeePHlClPHx8YGLiwupjqGhIezt7aGhoQF7e3sYGhoiPz+fKOPi4gI9PT0wGAywWCzivPc+riyTkZEh8r4VOA57e3uTck7k5OSAyWTC19eXuG/t7OxIL1IPDw+h+1ZPT0/u7tszZ85g0aJFWLBgASwsLPD222/DyMgI//zzD4CeSL/eS9KrV6/G5MmTYW5uDktLS7z++uuYOnUqzp8/T5SJi4vD0qVLMWPGDJiYmGDChAnYsmULYmNjJU62KOQHqUifP336FLm5uTh16hTq6uqgq6sLb29vxMXFEV7Bo41Hjx5BRUUFnp6ehHx3SEgISb67d+rh5uZmhISEwM/PD05OTmhtbcWdO3dIs3NlZWVMmjQJDAYDHR0dRAKn2traYe+fNElLS4O6ujpmz54NTU1NVFZW4ujRo0T8uqamJnR0dIjyCgoKWLBgAXR1dYnZ5pUrV4gcFUCPpeK3337DvHnzMG/ePNTV1eHXX3+VyxwVQM/SIZ1Oh4eHB5SVlcFmsxETE0PKUcFgMEizQDabjbt378LZ2Zm4BhMTE0lLKyoqKpgwYQJUVVXR2dkJDoeDuLg4iXkIZInHjx9DVVUVHh4e/b5vQ0NDSfdtQkIC6b5VUVFBYGAg6b69evWq3N23ERERYLFY2LhxI/T09PDo0SO8+eabRBSSnp4ejIyMiPJKSkrYsWMH9PX10d7ejsePH+PNN98k3bcnT54En8/Ha6+9Bn19fTQ2NiI2NhZHjx4d9v5JC8riIplRLX0uKnsbRf95+PDhSDdBZqG0PwZHY2PjSDdBZvn5559Hugkyy3Bofwzl8rW4KCVZRvYXVikoKCgoKChGBdSggoKCgoKCop/IQvKrhoYGrFu3DiwWCywWC+vWreuX9TAnJwcLFiwAi8WChoYGfH19B+x/Naqlz3vHilMMnJdffnmkmyCz5OXljXQTZJqKioqRboLM0tsZl4LieVizZg3KysoQGhoKANi8eTPWrVuHa9euia3z6NEjTJw4Ea+88go+/vhjsFgs5OTkCCXTexZSUyntzauvvoqff/4Zhw4dwo4dO57nJ4cFT09P+Pn5QUNDA7W1tQgLC0NpaanIskwmE9OnT4exsTF0dHSQnJyM8PBwUpl169bBwsJCqG5BQQHOnj0rjS6MGHw+H//88w+ioqLQ2toKa2trvPzyy0Lhe72JiopCXFwccY7HjRuHlStXwtramigTERGBW7duEWFrpqamWLJkCcaPHy/V/owELi4usLKyIhw17927Bw6HI7GOubk5XF1dCZXS9PR0UhpqfX19ODo6QltbGwwGA7GxsUJpqmUdb29v+Pv7Q0NDAzU1NQgNDRU7u2IymZg5cyaMjY2hq6uLpKQk4sHbG19fX3h5eYHFYoHL5SI7OxuRkZFixd1klSlTpmD27NnQ0tJCeXk5/vrrL1K6/N7Y2Nhg+fLlMDY2Jq7R27dvk557u3btEgoFB4D09HQcPnxYWt2g6EVOTg5CQ0Nx9+5dImT4xIkT8PPzQ15eHuzs7ETW27t3L+bMmYOvvvqK2Pc8sghSUykVcPnyZSQlJcHExGTAjRtOHB0dMXPmTNy8eRNlZWXw8PDAmjVrcOzYMZGZB+l0OlpbWxEfHy9Wzv3ChQug0+nEZwaDgc2bN8tdaBoAXLt2DSEhIXj11VdhbGyMS5cu4YsvvsA333wjlGxIQHZ2Nvz9/WFjYwMlJSVcv34dBw4cwFdffUVcQzo6Oli1ahXhhR4bG4tvvvkGX375pcQBi6zh4OAAe3t7JCYmorm5Gc7OzpgyZQquX78u9kWmp6eHgIAAZGRkoKysDGZmZpg4cSIiIiKIXBWKiopoaGjAo0eP5NL51MnJCbNmzcKNGzfw5MkTeHl54YUXXsCPP/4ockCmqKiI1tZWxMXFwdfXV+QxXVxcMG3aNFy5cgWlpaXQ1dUlkv2FhYVJszvDio+PD9asWYPTp0+joKAAQUFBePvtt7F3716h9N1Aj5RCZGQkSktL0d7eDltbW6xfvx7t7e2IiYkB0JNyoPczj8lk4pNPPiGFi8s6Q7lsIUqeQkVFBSoqKs99zMTERLBYLNJ7ydfXFywWCwkJCSIHFTweDzdu3MB7772HmTNn4v79+xg3bhx2794tMtGlJKSmUgoA5eXl2LZtG86cOTNsiayeF19fX9y/f59IKx4eHo6mpiZ4eXmJLM/hcBAeHo6MjAyxmfiePn2K1tZWYhs3bhw6OzuFxLdkHT6fj9DQUCxcuBA+Pj4wNzfHa6+9ho6ODolpjbdt24bp06fDwsICpqam2LRpE/h8PjIzM4kynp6ecHd3h7GxMYyNjbFy5UqoqqqKnU3JKvb29sjMzERZWRk4HA4SExOhqKgo0tIlwM7ODlVVVcjOzkZTUxOys7NRVVVFemhUVlYSgw55xM/PD2lpaUhLS0NdXR1CQ0PB4XDE3reNjY0IDQ1Fenq62ER85ubmePLkCR4+fIjGxkY8evQIDx8+HPUTo4EyY8YMxMbGIjY2FpWVlfj7779RX1+P4OBgkeWfPHmCpKQkVFRUgM1mIzExEZmZmSRV3NbWVjQ1NRGbk5MTOjo65GpQMZR8+eWXhN+DYPvyyy8HdcyqqiqRUhgGBgYk0cLe1NTUoKWlBQcOHMCsWbMQHh6OxYsXY8mSJcSAsb9ITaWUx+Nh3bp12Llz56jNTSGARqPB2NhYKFvjo0ePhnQ27O7ujqysLHR2dg7ZMUcDNTU1aGxsJKkbKikpwcHBgZSI6Vm0t7ejq6uLlFegNzweDwkJCWhvb4eNjc2g2z1aEKdSWlNTI1GlVE9PD5WVlaR9lZWV0NfXl1pbRxN0Oh0mJiZ49OgRaf+jR49gbm7+3Md98uQJTExMiEyd2trasLGxkauBLJ1Oh4WFBbKyskj7s7KyYGVl1a9jjBkzBtbW1hL9jyZNmoSkpCR0dHQMqr3yyu7du8HhcEibKBkLANi/f/8zHT8FIbWirCl8Pl+slUWQmGzhwoV46623MH78eLz//vuYN28ejh8/PqA+SU2l9OTJk1BUVMT27dsH1KCRgMFggEajobW1lbS/tbVV7AtuoJiYmMDAwECio4ysIjAz99U00dTUlJhmui9nz56Fjo4OnJ2dSfufPHmCffv2obOzE6qqqnjrrbfkaulDMECXlkqpvCKt+zYzMxMMBgMbNmwA0PMCTklJkSv5bg0NDdDpdKGlXQ6HI3T/9eWbb74h6l++fBmxsbEiy40bNw5mZmb49ddfh6zd8sZAljq2bduGVatWSSxjYWGBjIwMkcntamtrhdL6C9DT04OioiIcHR1J+x0cHAZ83UtFpbSoqAjfffcd0tLS+r3+JGptqauri6QHIW0Gotg3UMaPH4+amhq58IqPj48nKQ6+9957Ysv29/9/7do1JCQk4MMPP4SysjLpOxMTE3z55ZfgcrlITk7G8ePH8eGHH8rswMLCwgLe3t7EZ4F5UdS1NtDr77+Y7W+o8/dZWFhg0qRJuHHjBsrKyqCjo4PZs2ejublZ7AtUVnkehdcvv/wSqqqqsLS0xPLly1FTU4OkpCShcpMmTUJZWdmANIBkgZG6x/T09CRaLgX4+fmBw+EgOTkZPj4+AICkpCRwOBz4+/uLrKOsrAxvb28hq1N+fj7Gjh07oHZKRaU0ISEBNTU1GDNmDPFdd3c33nnnHRw+fBjFxcVCdUVJnwcFBYld3xtKuFwueDye0OyGwWAIzYKeB0VFRTg5OQ14bWq04unpSYrQEDgScjgcaGtrE/ubmpr6pch6/fp1XLlyBXv27CFdMwIUFRUJR01LS0s8evQIoaGh2Lhx42C7MiKUlZWRLDgCxzY1NTWS5UGUJaI3oqwSKioqEuvIE+LuW3V1dSJN9/MwZcoUpKenIy0tDUDP8p6ysjLmz5+PuLg4uVDabG5uRnd3t0jr4rMijgTXbllZGVgsFhYuXCg0qFBWVoaPjw8uX748pO2meDYODg6YNWsWNm3aRGSl3rx5M+bNm0fyt7K3t8eXX36JxYsXAwB27tyJlStXYtKkSZgyZQpCQ0Nx7do13L59e0C/LxWV0hdffBEZGRl48OABsZmYmGDnzp1ivadFrS0Nl7c6j8dDZWWlUPiMpaXlkDi4OTo6QlFRUW7SZqupqcHIyIjYTE1NoaWlRepfV1cXcnJySE5corh27RouXbqEXbt2DSh8SZZD+/qqlHI4HLS1tZF0Fmg0GgwMDCQuHwnCuXtjbGwsdxoV4uju7kZFRYWQD4CVlZXYUPD+oKSkJFZpU17o7u5GcXGxkL+bo6OjkI/KsxDlhO/t7Q0lJSWJjtoU0uPMmTNwcXHBjBkzMGPGDLi6uuL06dOkMnl5eaQB5OLFi3H8+HF89dVXcHFxwS+//IJ//vkHEydOHNBvD3ht4ciRI/D398fMmTPx2WefkUJKBSqlOjo6QvkqlJSUYGRkJDZGVtTa0nAufdy9exeLFi1CRUUFysvL4e7uDhaLhdTUVABAcHAwNDQ0cOXKFaKOYH1KWVkZDAYDhoaG6O7uFnoRuLu7Iy8vT66kk3ujoKCAWbNm4cqVK8RA48qVK1BWViaZ244ePUqEiAI9A4oLFy5g27ZthPgQ0DNDF8zAz549i/HjxxPS04mJicjOzsb7778/7P2UJrm5uXByckJzczOam5vh5OSErq4uklXPz88PXC6XUMLNy8vDtGnT4ODggPLycpiamsLIyAgRERFEHUVFRdJMXl1dHVpaWujo6BhSDYORIjExEUuWLEFFRQVKS0vh6ekJFotFOKxNnToVmpqauHTpElFHMHgT3LdGRkbo7u4mBmP5+fnw8/NDVVUVsfwRHByMvLw8ubBSCAgPD8emTZtQXFyMwsJCQkVZoAS8bNkyaGlp4ZdffgHQ8wxks9mEQ7GNjQ1mzZqFyMhIoWNPmjQJaWlpQ2LpHW3IwhKjjo4O/vzzT4llRF3LGzZsIHyJnhepqJTKItnZ2VBTU8OkSZPAZDJRW1uLv//+mxjJMZlMaGpqkups3ryZ+NvExAQuLi5obGzEDz/8QOzX0dHBmDFjnvkPlnXmz5+Pjo4O/Pbbb2htbYWVlRV2795NihJis9mg0f7fOBYREYGuri6hpDhLlizBsmXLAPQsoRw9ehSNjY1gMBgwNzfH+++/L3dZB3NycqCoqAhvb28oKyujrq4O0dHRElVK6+rqcOfOHbi6usLV1RUtLS2Ij48nclQAPdfftGnTiM+enp4AevLN3L17dxh6Jl2ysrLAYDAwefJkMJlM1NTU4MyZM8R9q6GhIWTi37JlC/G3iYkJXF1d0djYSFyHsbGx4PP5xESCy+UiLy8PUVFRw9av4SA5ORnq6upEWuby8nIcOnSIuH5YLBZpcqigoIBly5ZBX1+fGIRdvHhRyDxuaGgIW1tb/O9//xvO7lCMEka1Sumnn3460k2QaebMmTPSTZBZqDTdg2MgocQUZEpKSka6CTLLb7/9JvXfGMrw2L5O6fLAqNb+oKCgoKCgGE3IwvLHSEKplFJQUFBQUFAMCaPaUjFUiaf+qzx48GCkmyCziNMroegfktKLU0jmnXfeGekmUFA8N6N6UEFBQUFBQTGaoJY/JCM16fOXXnoJp06dItWbMGHCqPY4d3V1hZeXF9TV1cFmsxETE4Py8nKRZdXV1TFp0iQYGBhAW1sb9+/fF5ncytraGv7+/mCxWOBwOLhz586A48BlAQcHB7i4uEBNTQ2NjY24e/euyFSxAoyMjDBhwgRoaWmBy+Xi4cOHyM3NJb4fO3Ys3NzcoKmpCRqNhqamJmRmZqKwsHA4ujMiUNLnz4ednR2cnZ3BYDDQ0NCA5ORk1NTUiC1vaGgIb29vaGtrg8vlIjMzk+SYa2NjA2tra2hpaQHoiVoSCJbJG3w+Hz///DMuXbpEhDLv2rVLov7HtWvXhBIVAsCdO3dEppz+7bff8OOPP2L16tWUFeY/wIB9Kh4/fgwvLy/k5+fj77//RmFhIY4fP47IyEj4+fmRJHNnzZqFyspKYrt58+aQNn4osbW1RVBQEJKTk3HmzBmUl5dj0aJF0NDQEFmeTqejra0NycnJYpMNGRsbY+7cucjJycGff/6JnJwczJ07l5TkSB4YN24cJkyYgAcPHuDy5cuoqqrCzJkzxepWMJlMzJgxA1VVVbh8+TLS09Ph6+tLMpm3t7cjPT2dSI5VUFCAwMBAQuRJ3hBIn9+7dw9hYWF4+vQppkyZIjFXi0D6vKioCCEhISgqKsLEiRNJYYAC6XNB3gZ5w8LCAj4+PsjIyMDVq1dRU1OD6dOnS7z2pk2bhpqaGly9ehUZGRnw8fEhpSI2MjLC48ePERYWhps3b6K1tRUzZswAg8EYrm4NG6dOncJff/2F9957D6dOnYKuri5ef/31Z+aXUFdXR2hoKGkTNaDIysrCpUuX5EoAkEIyUpU+V1FRIWVeHM05LDw8PJCZmYnMzEzU19cjJiYGzc3NJOXN3jQ1NeH27dvIyckRK6Hs7u6OkpISpKSkoKGhASkpKSgtLYW7u7s0uzLsODs7Iz8/H/n5+eBwOEhKSkJra6tE4bnW1lYiH72gbu/cE1VVVSgpKQGHw0FzczOysrJQX18vVhBH1qGkz58PJycnFBQUoKCggNA7aG1tFZtkz87ODq2trUhOTgaHw0FBQQEKCwtJmSXj4uKQl5eH+vr6/2vv3mParP4/gL8pA1oKLRTaUXapIpcVOhAGFmEZGWxuiiTiYggLDs2yqckSzaImyza5JE5nNjcNLsoSSRZnRUO2aLYxNgW3AcNdQBG5CxHHZeMqtyGh5/eH4fmttLAv8Dxt6T6v5EnW9fThnE8O5TznOc/5YGhoiNsVcubupUsdYwwGgwGvvvoqEhMTERgYiJycHNy/fx/FxcVzftbJyYnLRTFbToqxsTEcPHgQ+/fvn/XibCl6WKbQ+RyOSLDU5wBQVlYGlUqF4OBg7Nq1a84pSVsSiURYvny52fPh0ymQF0qtVpuds729fVHntDcikQi+vr5mt4nu3LkDlUpl8TMqlcpieV9f31l/0dRqNeRyuUl6cEdBqc8XRiQSwcfHxyxJX2dn56x9T6lUmpV/WN9zdnaGSCSa9eJhqbpz5w76+voQGxvL/Z+rqyuioqLw22+/zfnZ8fFxPP/883juuefw1ltvmdy6nHb48GHEx8dDr9fzXndivwRLff7ss8/ipZdegkajQVtbGw4ePIjExETcunXrf071ai0SiQQikchs2+LR0dF5Z2h7kFQqNTvn2NiYQ02jisViiEQisy3Ix8fHZ32CQiKRWCwvEokgFou591xcXJCeng5nZ2cYjUZUVFQ4RJbXmSj1+cK4ubkJ1vcetG7dOoyNjZkN4Ja66Z0zZ6ZU8PHxmbOtjz32GLKyshAYGIjR0VEYDAbs3LkTBoOBSwh48eJFNDQ04NSpU8I1gNglQVKfOzk5IS0tjft/nU6H6OhoaDQanDt3Di+++KLZZ+0h9flMQkxPOeqU13z9Lxu5Tk5O4syZM3BxcYG/vz/0ej2Gh4eX/GwFpT4X1nxjMFd5nU6HgIAAFBcXY2pqarFVs6kLFy7g0KFD3Ovpbclntp8xNmdM1q5da3KrMiIiAhkZGSgsLMQ777yD7u5uHD16FHl5eXZ3AckH+h2bmyCpzy1N2arVamg0GjQ3N1s8t6XU58888wy2bt06nyouyPj4OIxGo9kMgru7+6KSLo2OjpqdUyKROEQip2n379+H0Wg0uzK0dEU4bXx83GJcjEaj2ZX38PAwgP9uvXl5eSEiImLJDyoo9Tk/JiYmLPa92WYcAMuzGGKx2GLfCwsLQ3h4OC5evIiBgQF+K28DGzZsgE6n415Pbzfd29tr8p3d398/r/VvIpEIoaGhXGbYhoYG9Pf34+WXX+bKTE1Nobq6Gt9++y0qKiq4Pk8cjyCpzy2N5Pr6+tDR0THrYidLqc8fTIQkJKPRiJ6eHrNbHatXr17UdHtXV5fZOTUajUNN4RuNRvT29po9leHv7z/rGpq7d++arStZsWIFent7H3pl7ghfRpT6nB9GoxF9fX1mfWmuvnfv3j2L5Wf2vbCwMERERODSpUsmCdqWMqlUilWrVnFHQEAAfHx8UFVVxZWZnJzE7du3Z12gbgljDE1NTdxtlJiYGHzzzTc4ffo0d4SGhmLr1q04ffq0Q/wOk9nN++mPvLw8TExMYMuWLbhy5Qo6OjpQXFyMzZs3c6nPR0ZG8Pbbb6OyshLt7e0oKytDSkoKfH19kZqaavG8bm5ukMlkJoc1b33cvn0bOp0OYWFhUCgUSEhIgKenJ7dgKT4+Hlu2bDH5jFKphFKphKurKyQSCZRKpckIv7q6GhqNBtHR0fD29kZ0dDRWr16N6upqq7XLGn7//XcEBwcjKCgIcrkcer0eHh4e3OKt6OhobNiwgStfX18PDw8P6PV6yOVyBAUFITg4GLW1tVyZ8PBw+Pv7c1kmdTodgoKCHHafiunU5ytXroRcLkdsbKzF1OcRERHc68bGRvj5+UGr1UImk0Gr1cLPz89kz4Vly5bBy8uL23NhOvW5o6zrqaur4/aVkMvliImJgVQq5WIQFRWF9evXc+UbGxshlUoRExMDuVyOwMBABAUFoa6ujiuj0+kQFRWF8vJyjIyMQCKRQCKR2PRWrBCcnJyQnp6OgoIClJaWoqWlBdnZ2RCLxSYzxO+99x7y8vK41/n5+aisrMTff/+NxsZG5ObmorGxEdu2bQPwXx8LDAw0OcRiMby8vBAYGGj1dvKNnv6YmyCpz8fHx1FbW4tTp05hcHAQarUaGzduRGFhod0+WtTU1ASxWAy9Xs9tfnX27Flu+l0qlZrVPSMjg/v38uXLodVqMTQ0hC+//BIAuL054uLiEBcXh8HBQZw/f37JT9/P1NbWBrFYjMjISG4DopKSEoyMjAD4b1r/wS3XR0ZGUFJSAr1eD61Wi7GxMVy/ft3kD6iLiwvi4uIglUoxNTWFwcFBlJWVoa2tzdrNswpKfb4w7e3tcHNzw5NPPgmJRIKBgQFcvnyZ22fB3d3drO9dvnwZTz31FNasWYOxsTH88ssvJk9prVmzBs7Ozti4caPJz6qpqXG4re8zMzMxMTGBDz/8EMPDw9DpdMjLyzNZINzd3Q2R6P+vP4eHh/H++++jr68PHh4eCAkJwcmTJ01urZBHl12nPj927Jitq7CkyWQyW1dhyaLcH4vDZ3roR830FT+ZP3u9aH2UUJZSQgghhPCCBhWEEEII4YVd3/6wZxMTE/jggw+wb98+h3wWW2gUv4Wj2C0cxW5xKH7kYWhQsUD//PMPl3mU1i7MH8Vv4Sh2C0exWxyKH3kYuv1BCCGEEF7QoIIQQgghvKBBBSGEEEJ4QYOKBXJzc0NWVhYtVlogit/CUewWjmK3OBQ/8jC0UJMQQgghvKCZCkIIIYTwggYVhBBCCOEFDSoIIYQQwgsaVABgjGH37t1QKBRwcnJyuEyEQqP4LRzFbnEofgtHsSOCYISdP3+eubi4sPLyctbV1cUmJycXdb7Ozk6Wnp7OgoODmZOTE3vzzTf5qaid4jt+RUVFbNOmTczX15d5enqy2NhYVlxczFNt7Qvfsbt69SqLi4tjCoWCicViFhISwj7++GOeamt/+I7fg65du8acnZ1ZREQEb+e0J3zHrrS0lAEwO+rr63mqMVkKltl0RGMnWltboVarERcXx8v5JiYmoFQqsX///kcifTvf8bty5Qo2b96MQ4cOwcvLCwUFBUhJSUFVVRUiIyN5+Rn2gu/YSaVS7NmzB+Hh4ZBKpbh27Rpee+01SKVS7N69m5efYU/4jt+0oaEh7NixA0lJSejp6eH13PZCqNg1NjaabOGtVCp5PT+xc7Ye1dhaZmamyahao9GwCxcusPj4eCaXy5lCoWDJycmspaXF5HMdHR0sLS2NeXt7M3d3d7Zu3Tp2/fp1s/MnJCQ49EyF0PGbFhoaynJycoRujlVZK3apqaksIyND6OZYnZDxS0tLYwcOHGBZWVkOOVMhROymZyoGBgZs0CJiLx75NRWffPIJcnNzsXLlSnR1deHGjRsYHR3F3r17cePGDfz4448QiURITU2F0WgEAIyMjCAhIQGdnZ34/vvv8euvv+Ldd9/l3n+UWCN+RqMRw8PDUCgU1mya4KwRu+rqalRUVCAhIcGaTbMKoeJXUFCA1tZWZGVl2appghOy70VGRkKtViMpKQmlpaW2aB6xJVuPauzBsWPHmEajmfX9u3fvMgCstraWMcbYF198wTw9PVlfX99Dz+3oMxWMCRs/xhj76KOPmEKhYD09PXxU164IFbsVK1YwV1dXJhKJWG5uLp9Vtit8x6+pqYmpVCrW2NjIGGMOO1PBGP+xa2hoYPn5+ezWrVusoqKCvfHGG8zJyYn9/PPPQlSf2KlHfqbCktbWVmzfvh0BAQGQyWR4/PHHAQB//fUXAKCmpgaRkZEOd+XMFz7jZzAYkJ2djcLCQqhUKkHrbQ/4it3Vq1dx8+ZNfP755zh+/DgMBoPgdbcHi4nf1NQUtm/fjpycHAQHB1u13vZgsX0vJCQEu3btQlRUFJ5++mmcOHECycnJOHLkiNXaQGyPFmpakJKSglWrVuHkyZPw9/eH0WiETqfDv//+CwCQSCQ2rqF94yt+hYWF2LlzJ7777jts2rRJyCrbDb5iN/0HYe3atejp6UF2djbS09MFq7e9WEz8hoeHcfPmTVRXV2PPnj0A/rv1xhjDsmXLUFJSgsTERKu0wxaE+N6LjY3FV199xXdViR2jmYoZ+vr6UF9fjwMHDiApKQlarRYDAwMmZcLDw1FTU4P+/n4b1dJ+8RU/g8GAV155BV9//TWSk5OFrrZdEKrvMcYwMTHBd3XtzmLjJ5PJUFtbi5qaGu54/fXXERISgpqaGuj1ems1xeqE6nvV1dVQq9V8V5fYMRpUzODt7Q0fHx/k5+ejpaUFP/30E/bu3WtSJj09HX5+fnjhhRdQXl6OP//8E0VFRaisrOTKTH8pjYyM4N69e6ipqcEff/xh7eZYHR/xMxgM2LFjB44ePYrY2Fh0d3eju7sbQ0NDtmiS1fARu88++ww//PADmpub0dzcjIKCAhw5cgQZGRm2aJJVLTZ+IpEIOp3O5FCpVBCLxdDpdJBKpTZqmfD46HvHjx/H2bNn0dzcjLq6Ouzbtw9FRUXcrA95RNh6UYc9mLlg6dKlS0yr1TI3NzcWHh7OysrKGAB25swZrkx7ezvbtm0bk8lkzN3dnUVHR7OqqirufVjYBGauRVFLGd/xS0hIsBi/zMxM6zbMCviO3aeffsrCwsKYu7s7k8lkLDIykp04cYJNTU1ZuWXWIcTv7oMepYWai43d4cOH2RNPPMHEYjHz9vZm69evZ+fOnbNyq4itUepzQgghhPCCbn8QQgghhBc0qCCEEEIIL2hQQQghhBBe0KCCEEIIIbygQQUhhBBCeEGDCkIIIYTwggYVhBBCCOEFDSoIIYQQwgsaVBBCCCGEFzSoIIQQQggvaFBBCCGEEF7QoIIQQgghvPg/6GGxP3Lh7ccAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Visualise heatmap\n", "sns.heatmap(big5_loadings, \n", " cmap='Greys', # Greyscale colour, so black-to-white\n", " annot=True, # Labels with the actual correlation\n", " fmt='.2f') # Tells the label to be 2 decimal places" ] }, { "cell_type": "markdown", "id": "95530bc5-dbfe-4778-baa0-a0dde3ccc83e", "metadata": {}, "source": [ "This is an interesting result. We can see now, clearly, the existence of the factors. For example, `fac1` has high loadings with the five \"N\" questions, indicating it to be Neuroticism. Similarly, `fac2` has high loadings on the \"E\" questions, suggesting Extraversion, and so on. Notice some of the other correlations within the factors are relatively high with other types of questions too - its never a clear cut solution.\n", "\n", "We can examine our factor variances:" ] }, { "cell_type": "code", "execution_count": 14, "id": "d78084fd-c04a-4ffb-ae4e-dfb5517e6e6d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([2.70387986, 2.48623235, 2.04986716, 1.63844108, 1.46150922]),\n", " array([0.10815519, 0.09944929, 0.08199469, 0.06553764, 0.05846037]),\n", " array([0.10815519, 0.20760449, 0.28959917, 0.35513682, 0.41359719]))" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Show factor variances\n", "big5_efa.get_factor_variance()" ] }, { "cell_type": "markdown", "id": "8353acea-89e1-4dee-936c-eabec8e00e2e", "metadata": {}, "source": [ "So taken together, all factors capture about half the variance in the data. The first factor (which we think is Neuroticism...!) explains about 10%, the second, Extraversion, explains about 9%, and so on. \n", "\n", "What about the communalities? Do any of these indicate anything noteworthy? Again here it is helpful to visualise these." ] }, { "cell_type": "code", "execution_count": 15, "id": "f69a1e11-cb76-4575-9d45-2296c3dc6bb9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAGdCAYAAACYfeAwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7G0lEQVR4nO3dd1hT1/8H8DcJG2UIsmU4QIaAggOsWxHcG6uW4qp7TxyVYi1qq3XiHqhocW9x1olaAVEBEVERZW9QNsnvD7/cnzEBE0gYyef1PHme5uTcc8+1D3Byzr3nLcflcrkghBBCCPkGq647QAghhJD6iQYJhBBCCBGIBgmEEEIIEYgGCYQQQggRiAYJhBBCCBGIBgmEEEIIEYgGCYQQQggRiAYJhBBCCBGIBgmEEEIIEUi+rjtQFQ6HU9ddIIQQ0kCwWJL/3isnJye2thrChsfV/hcNCQkBm82Gm5sb32dz5syBo6MjlJSU4ODgUJP+ESL1jh49it69e8Pe3h7Dhw9HaGhopXWvXbuGCRMmwMXFBU5OThg9ejTu37/PVy8vLw++vr7o0qUL7O3t0b9/f9y5c0eSl0GITJCTkxPbqyGo9iBh//79mDVrFu7fv4+EhASez7hcLiZMmAAPD48ad5AQaXb58mWsXbsWU6ZMwenTp+Ho6IgpU6YgKSlJYP3Q0FC4uLhg165dOHnyJDp27Ijp06cjOjqaqVNSUoKJEyciMTERmzdvxuXLl+Hr6ws9Pb3auixCiJSQq07A0+fPn2FgYIAnT55g1apVsLa2xq+//spXz8fHB2fPnkVERES1OkfLDUTaeXh4wMrKCj4+PkxZ//790atXL8yfP1+oNgYMGAB3d3fMmDEDAPDPP/9g//79uHTpEhQUFCTRbULqpdpYbmCz2WJrq7y8XGxtSUq1/kWDgoJgaWkJS0tLjBs3DgcOHGgQayuE1CclJSWIiopC586deco7d+6Mp0+fCtUGh8NBQUEBNDU1mbJbt27BwcEBq1evxg8//ICBAwdi165dDeIXEiH1XV0uN/j7+8Pc3BzKyspwdHTEvXv3qqwfGBgIe3t7qKqqwsDAAOPHj0dmZqZI56zWIGHfvn0YN24cAMDNzQ2fPn3CzZs3q9MUITIrJycH5eXl0NHR4SnX1tZGRkaGUG0cOHAABQUFPPcGffz4EVevXkV5eTl27dqFqVOn4sCBA9i5c6dY+0+ILGKxWGJ7iSIoKAhz587F8uXL8fTpU3Tp0gXu7u58y/0V7t+/D09PT0ycOBFRUVE4ceIEnjx5gkmTJol2vSLVBvDq1Sv8999/GD16NABAXl4eHh4e2L9/v6hN8SguLkZeXh7Pq7i4uEZtEtIQcblcob5lXLp0Cdu3b8fGjRuhra3NlHM4HGhra8PX1xc2Njbo378/pk6din/++UeS3SaESNDGjRsxceJETJo0CVZWVti0aROaNWuGHTt2CKz/6NEjmJmZYfbs2TA3N8cPP/yAKVOmVHljtCAiDxL27duHsrIyGBkZQV5eHvLy8tixYwdOnz6N7OxsUZtj+Pn5QUNDg+e1du3aardHSH2nqakJNpvNN2uQlZXF80dfkMuXL2PFihXYuHEjXFxceD5r2rQpTE1NedZOmzdvjoyMDJSUlIjvAgiRQeJcbhD2y3FJSQnCwsLg6urKU+7q6oqQkBCB/XRxccHHjx9x+fJlcLlcpKam4uTJk+jfv79I1yvSIKGsrAyHDh3Chg0bEBERwbyePXsGU1NTBAYGinTyr3l7eyM3N5fntXTp0mq3R0h9p6ioCBsbG74f8pCQELRt27bS4y5duoRly5bhzz//RPfu3fk+b9euHRISEnhu/I2Pj0fTpk2hqKgotv4TIovEOUgQ9OXYz8+P75wZGRkoLy/ne0JJT08PKSkpAvvp4uKCwMBAeHh4QFFREfr6+tDU1MTWrVtFul6RBgkXL15EdnY2Jk6cCFtbW57XiBEjsG/fPgBAXFwcIiIikJKSgsLCQmYwUdW3GCUlJairq/O8lJSURLoYQhqan3/+GadOncKpU6fw5s0b+Pn5ITk5mXl8eOPGjViyZAlT/9KlS1i6dCkWL14Me3t7pKenIz09Hfn5+Uyd0aNHIycnB3/88QfevXuH27dvY/fu3RgzZkytXx8hpHKCvhx7e3tXWv/bZciqliajo6Mxe/Zs/PrrrwgLC0NwcDDevXuHqVOnitRHkR6BHDhwIDgcDi5dusT3WXh4OBwdHREWFob58+cL3Ljl3bt3MDMzE7pz9AgkkQVHjx7Fvn37kJ6ejlatWmHp0qVo3749gC+/RBITE3Ho0CEAgKenJ548ecLXxpAhQ3i+gTx9+hRr165FTEwM9PT0MHz4cEyaNEmsj28RUt/UxiOQKioqYmursLBQqHolJSVQVVXFiRMnMHToUKZ8zpw5iIiIEPj39qeffkJRURFOnDjBlN2/fx9dunRBUlISDAwMhDp3tfZJqC00SCCEECKs2hgkqKqqiq2tgoICoet27NgRjo6O8Pf3Z8qsra0xePBggUsUw4cPh7y8PIKCgpiyhw8fwsXFBYmJiTA0NBTqvBTwRAghhNRz8+fPx969e7F//368fPkS8+bNQ0JCArN84O3tDU9PT6b+wIEDcfr0aezYsQNv377FgwcPMHv2bHTo0EHoAQJQzwOeCCGEkPqkrjIXPDw8kJmZCV9fXyQnJ8PW1haXL1+GqakpACA5OZlnzwQvLy/k5+dj27ZtWLBgATQ1NdGzZ0+sW7dOpPPW6+WGV69e1XUXCCGENBCWlpYSP0fjxo3F1tbXNxzXV7TcQAghhBCBqr3cEBISgi5duqBPnz4IDg5myp89e4a1a9fi/v37yMjIgJmZGaZOnYo5c+aIpcOESJvLly8zm5GZmJhg0qRJsLGxEVg3OjoaBw8eRGJiIoqLi9G0aVO4ublh8ODBTJ2ysjKcPHkSt27dQmZmJoyMjPDzzz/D0dGxti6JEKnVUCKexaXag4SKqOi9e/ciISEBJiYmAICwsDA0bdoUR44cQbNmzRASEoJffvkFbDYbM2fOFFvHCZEG9+7dw969ezF16lRYWVkhODgYv/32G7Zv346mTZvy1VdSUkL//v1hbm4OJSUlREdHw9/fH0pKSkx+w5EjR3D79m3MnDkTxsbGCA8Ph5+fH9atW4cWLVrU9iUSIlVkbZAg0ajoCjNmzMDLly9x69Ytkc5D9yQQabdw4UI0b94c06dPZ8qmT5+Ojh074ueffxaqjT/++APKyspMtLSXlxdGjhzJs/3qmjVroKysjAULFoj3AgipR2rjnoSvE1drKicnR2xtSUqtREXn5uaiSZMm1e4kIdKotLQUcXFxfFswt23bFjExMUK18ebNG8TExMDW1panXQUFBZ56ioqKePnyZc07TQiRKdVabqgsKrp37958dR8+fIjjx48L3KWREFmWl5cHDofD981EQ0Pju98wxo8fj9zcXHA4HIwePZon+KVt27Y4d+4cbG1toa+vj2fPnuHx48e0ORkhYiBryw0iDxIqoqJPnz79pYGvoqK/HSRERUVh8ODB+PXXX9GnT58q2y0uLuZLvyopKaFAGiL1qvNLx8/PD0VFRXj16hUOHToEAwMDdOvWDQAwefJkbNu2jVnCMDAwQO/evXHjxg2x9psQWUSDhO/4Oiq6ApfLhYKCArKzs6GlpQXgy13YPXv2xOTJk7FixYrvtuvn54fffvuNp2zGjBmYNWuWqF0kpEFQV1cHi8Xii1jPzc397rqnvr4+AMDMzAw5OTn4559/mEGChoYGli9fjpKSEuTn56NJkyYICAjgS5AjhJDvkUhUdFRUFHr06IGff/4Za9asEaptQWlYU6ZMEf2KCGkgFBQU0LJlS0RERPCUR0REoHXr1kK3w+VyUVpayleuqKgIbW1tlJeXIyQkBB07dqxplwmReSwWS2yvhkCkmYSvo6I1NDR4PquIiu7Rowd69OgBV1dXzJ8/n8m6ZrPZAh/pqqCkpMQXDU1LDUTaDR48GH///TdatmyJ1q1b4+rVq0hPT4e7uzsAICAgAFlZWZg3bx6AL1HRTZs2hbGxMYAvM3Znz57FgAEDmDZfvXqFzMxMNG/eHJmZmTh27Bi4XC6GDRtW+xdIiJSh5YYq7Nu3D7179+YbIABfEqf++OMPeHt7Iz09HYGBgczMAgCYmpoiPj6+xh0mRJp06dIF+fn5CAoKQlZWFkxNTfHrr79CV1cXAJCdnY309HSmPpfLxaFDh5Camgo2mw19fX14enoyeyQAX55uCAwMREpKCpSVleHk5IR58+ahUaNGtX59hJCGjbIbCCGESIXa2CehYgAvDmlpaWJrS1IoBZIQQggRkqwtNzSMOycIIYQQUuvq9UxCZmZmXXeBEEIIYcjaTEK9HiQQQggh9YmsDRKqvdwQEhICNpvNc1c18OXbv5ubGwwNDaGkpIRmzZph5syZyMvLq3FnCZFGt27dwqJFizB58mT4+PggNjZWqONev36NiRMnVhmu9vjxY4wfPx5btmwRV3cJkWmytk9CtXtZERV9//59JCQk/H+DLBYGDx6M8+fPIzY2FgcPHsSNGzcwdepUsXSYEGny+PFjHD16FAMGDMBvv/0GCwsLbNy48btLbQUFBdizZw+srKwqrZORkYGgoCBYWFiIu9uEEBlRrUHC58+fcfz4cUybNg0DBgzAwYMHmc+0tLQwbdo0ODk5wdTUFL169cL06dNx7949cfWZEKlx7do1dO3aFd26dYOhoSHGjBmDJk2afDdWPSAgAJ06dULLli0Ffs7hcLB7924MGTKkyk3MCCGikZOTE9urIZB4VHRSUhJOnz7N7CtPCPmirKwM8fHxsLGx4Sm3sbHBmzdvKj3u3r17SEtLw+DBgyutc+7cOTRu3Bhdu3YVW38JITRIEEplUdFf+/HHH6GqqgojIyOoq6tj7969Ne8tIVIkPz8fHA4H6urqPOUaGhrIzc0VeExKSgpOnjyJKVOmgM1mC6zz+vVr3Lt3D15eXuLuMiFExog8SKiIih49ejQA3qjor/39998IDw/H2bNn8ebNG8yfP7/KdouLi5GXl8fzKikpEbV7hDQ4336jqGxWjsPhYNeuXRgyZAiTAvmtwsJC7N69G15eXmjcuLHY+0qIrJO1mQSJRUXr6+tDX18frVu3hra2Nrp06YKVK1fCwMBAYLuCoqInTJiAiRMnitpFQhqExo0bg8Vi8c0a5OXlCcxHKSoqQnx8PBISEnDkyBEAX372uFwuJk6ciAULFqBRo0bIyMjA5s2bmeMqBh0TJ06En5+fWLeVJUTWNJQ/7uIi0iDh66hoV1dXns+GDx+OwMBAzJw5k++4il9SxcXFlbbt7e3NN9sQHh4uSvcIaVDk5eVhZmaGqKgoODo6MuXR0dFwcHDgq6+srIzVq1fzlN26dQsvX77EjBkz0LRpU7BYLL46p0+fRlFREXNTJCGECEvsUdHNmzdHamoq2rdvj0aNGiE6OhqLFy9G586dYWZmVmnbFBVNZJGrqyv27NkDMzMztGzZEnfu3EFmZiZ69OgBADhx4gRycnIwefJksFgsJiK6grq6OhQUFHjKv62jqqoqsJwQIjqaSaiCMFHRL1++xKlTpzBv3jwUFxejWbNmGDZsGJYuXSq2ThMiLTp27IjPnz/j/PnzyM3NhZGREebNmwcdHR0AQG5uLm1PTkg90lA2QRKXeh0VHRISUtddIIQQ0kC4uLhI/BzNmzcXW1tv374VW1uSQtkNhBBCiJBouYEQQgghAtEgoR6pjakjQgghRFiyNkiQrTswCCGEECI0sUdFfy0zMxPGxsaQk5NDTk5OdU9FiFQLDAxEz5490aZNGwwbNgyhoaGV1r127RrGjx+PTp06oV27dvDw8OALTzt9+jSTrfL1q6p9SgghwpG1HRfFHhX9tYkTJ8LOzq7anSNE2l2+fBl+fn6YNm0azp49C0dHR0yePBlJSUkC6z958gQuLi7YvXs3Tp8+jY4dO2LatGmIjo7mqdeoUSPcv3+f5/XtPiSEENGxWCyxvRoCsUdFV9ixYwdycnKwcOHCmvaREKl14MABDB8+HCNHjkSLFi2wfPly6Ovr49ixYwLrL1++HJMnT4adnR3MzMwwf/58mJqa8kVLy8nJoWnTpjwvQggRlUSioqOjo+Hr64tDhw41mNESIbWtpKQEUVFR+OGHH3jKO3fujKdPnwrVBofDwefPn6GpqclTXlBQgB49eqBr166YMmUK30wDIaR6aLlBCFVFRRcXF+PHH3/En3/+CRMTE6HbFJQCSWuoRJplZ2ejvLwc2traPOU6OjpIT08Xqo39+/ejsLAQ7u7uTFnz5s3h5+eHHTt2YOPGjVBSUsKPP/6I+Ph4cXafEJlEg4Tv+F5UtLe3N6ysrJhBhLD8/PygoaHB8/Lz8xO1e4Q0OIKiooX5BXLx4kVs27YNf//9N89Aw8HBAYMHD0br1q3h5OSETZs2wczMjEmOJIQQYYk9KvrWrVt48eIFTp48yXwGfPl2tHz5cr446AqCUiDpRisizbS0tMBms5GRkcFTnpmZyWQ3VOby5ctYvnw5Nm/e/N39RFgsFtq0aUMzCYSIgawtoYs9KvrUqVMoLCxkyp88eYIJEybg3r17aNGiRaVtC0qBJESaKSoqwsbGBg8ePECfPn2Y8pCQEPTq1avS4y5evIhly5Zh48aN6N69+3fPw+Vy8fLlS1hYWIij24TItIayTCAuYo+KnjlzJk95xbckKysrvpurCJF148ePx+LFi2Fra4u2bdsiKCgIycnJzHLehg0bkJqaivXr1wP48jO4ZMkSLFu2DPb29sy9C8rKymjcuDEAYNu2bbC3t4eZmRk+ffqEQ4cOISYmBqtWraqbiySENFhij4oODw9Hu3btxNZBQqRZv379kJ2dDX9/f6SlpcHCwgK7d+9mlvPS09ORnJzM1A8KCkJZWRl8fX3h6+vLlA8dOhRr164FAOTl5eHXX39Feno6GjduDGtraxw5coT2LCFEDGRtuaFeR0UTQggh9YmDg4PY2oqIiBBbW5JSrwOeCCGEkPpE1u5JkK15E0IIIYQIrV7PJCQmJtZ1FwghhDQQXz+aLymydk9CvR4kEEIIIfUJLTcIqaqoaEHbT+7cubNGHSVEWp07dw5jxoxB3759MWXKFDx//rzSui9evMCsWbMwZMgQuLm54eeff8aJEyf46n369AmbN2/GiBEj0LdvX3h5eeHRo0eSvAxCiBSq9kxCRVT03r17kZCQwJfTcODAAZ4BhKDHJgmRdf/++y+2b9+OOXPmwNbWFhcuXMDSpUtx4MAB6Onp8dVXVlbGkCFD0Lx5c6ioqODFixf4+++/oaKiggEDBgAASktLsWjRImhqasLHx4fJglBVVa3tyyNE6tBygxAqoqKfPHmClJQUHDx4EL/++itPHU1NTejr64ulk4RIqxMnTsDd3R39+/cHAMycOROhoaE4f/48Jk+ezFe/VatWaNWqFfNeX18f9+7dw/Pnz5lBwpUrV5CXl4etW7dCXl6eqUcIqTlabhDC96KigS+/7HR0dNC+fXvs3LkTHA5HLB0mRFqUlpYiNjYWTk5OPOVOTk6IiooSqo3Xr18jKioK9vb2TFlISAhsbGywefNmDB8+HBMmTEBgYCDKy8vF2n9CiPSr1kxCZVHRvXv3BgCsXr0avXr1goqKCm7evIkFCxYgIyMDK1asqLTN4uJivmjo4uJiynMgUis3NxccDgdaWlo85VpaWsjKyqry2FGjRiE3Nxfl5eX4+eefmZkIAEhOTsbTp0/Ru3dv+Pn54ePHj9iyZQvKy8vh6ekpkWshRFbQcsN3VERFnz59+ksDX0VFVwwSvh4MVOxO5evrW+Ugwc/Pjy8hct68eViwYIGoXSSkQalOVPTmzZtRWFiI6Oho7N27F4aGhkwoFJfLhZaWFubPnw82mw0LCwtkZmYiKCiIBgmE1JCsLTeIPSr6229FANCpUyfk5eUhNTVV4M1YgOCo6G8jdAmRJhoaGmCxWHyzBjk5OQJ/jr5mYGAAAGjevDmys7MREBDADBKaNGkCeXl5sNlspr6JiQmysrJQWloKBQUFMV8JIURaiTRv8nVUdEREBPN69uwZTE1NERgYKPC4p0+fQllZucoUSCUlJairq/O8aKmBSDMFBQVYWFggLCyMpzwsLAw2NjYitVVaWsr8t62tLRITE3nuA/r48SO0tbVpgEBIDQl6xL+6r4ZA7FHRpqamSElJgbOzM1RUVPDvv/9i+fLl+OWXX+iPPiHfGDlyJPz8/GBpaQlra2tcvHgRqampGDhwIABgz549yMjIgLe3NwDg7Nmz0NXVZR45fvHiBY4fP44hQ4YwbQ4aNAhnzpzBtm3bMHToUCQmJuLo0aMYOnRorV8fIdKG7kmogjBR0S9evMCJEycwf/58cDgcNG/eHL6+vpgxY4bYOk2ItOjRowfy8vJw6NAhZGVlwczMDH5+fswji1lZWUhLS2Pqczgc7N27FykpKWCz2TAwMMCkSZOYQQUA6OrqYv369fD398ekSZOgo6ODYcOGYfTo0bV+fYRIm7qcAfD398eff/6J5ORk2NjYYNOmTejSpYvAul5eXggICOArt7a2FvrpKaCeR0VTdgMhhBBh1UZ2Q9euXcXW1t27d4WuGxQUhJ9++gn+/v7o3Lkzdu3ahb179yI6OppvM0Pgy9NThYWFzPuysjLY29tj1qxZ8PHxEfq8NEgghBAiFWpjkNC9e3extXX79m2h63bs2BHt2rXDjh07mDIrKysMGTIEfn5+3z3+7NmzGDZsGN69ewdTU1Ohz0sBT4QQQoiQxLncIGh/ICUlJb7790pKShAWFoalS5fylLu6uiIkJESoc1XcLiDKAAGo54OEhnL3JyGEECIqQfsDrVq1im85ICMjA+Xl5XxbCOjp6SElJeW750lOTsaVK1dw9OhRkftY7UFCSkoK1qxZg0uXLiExMRG6urpwcHDA3Llz0atXL+zevRtHjx5FeHg48vPzkZ2dXeUjkITIqrNnzyIoKAiZmZkwMzPDzJkzYWdnJ7DuixcvsGvXLnz48AFFRUXQ09PDwIEDMXLkSKZOcHAw1q1bx3fs1atXoaioKLHrIEQWiPPLq6D9gap6CrA6G68BwMGDB6GpqcnzFJSwqjVIiI+PR+fOnaGpqYn169fDzs4OpaWluHr1KmbMmIGYmBgUFBTAzc0Nbm5uzONbhBBet27dwvbt2zF37lwmBXLJkiU4ePBgpSmQQ4cO5UmB3LhxI5SVlXmecFBTU8OhQ4d4jqUBAiE1J85HIAUtLQiio6MDNpvNN2uQlpZW6QaFFbhcLvbv34+ffvqpWr8DqjVImD59OuTk5PDff/9BTU2NKbexscGECRMAAHPnzgUg2o0ZhMiaEydOoF+/fjwpkE+ePBE5BfLFixc8gwTgy86LhJCGT1FREY6Ojrh+/TrPfifXr1/H4MGDqzz2zp07iIuLw8SJE6t1bpEHCVlZWQgODsaaNWt4BggVaEmBEOFUpECOGTOGp9zJyQmRkZFCtfH69WtERkby/QIoLCzE6NGjUV5ejpYtW2LChAk8gwtCSPXU1b1y8+fPx08//QQnJyc4Oztj9+7dSEhIwNSpUwF8WbpITEzkm0Hct28fOnbsCFtb22qdV+RBQlxcHLhcLlq3bl2tExJCvqgqBTI7O7vKY0eOHFlpCqSJiQmWLl0Kc3NzFBQU4NSpU5g1axb27t0LY2NjiVwLIbKirnZc9PDwQGZmJnx9fZGcnAxbW1tcvnyZeVohOTkZCQkJPMfk5ubi1KlT2Lx5c7XPK/IgoWJbBXGPpigqmsiq6vwsbdmyhUmB3LNnD4yMjJiAJ2tra1hbWzN1bW1t8csvv+D06dOYPXu22PpNCKld06dPx/Tp0wV+dvDgQb4yDQ0NFBQU1OicIg+JWrVqBTk5Obx8+bJGJ/6Wn58fNDQ0eF7btm0T6zkIqU8qS4GsLE31awYGBmjevDkGDBiAESNGCNx+tQKLxULr1q1pczJCxEDWAp5EHiQ0adIEffv2xfbt2/H582e+z3NycqrVEW9vb+Tm5vK8Zs6cWa22CGkIKlIgQ0NDecrDwsJEWj/kcrkoKSmp8vO4uDi6kZEQMZC1QUK1nm7w9/eHi4sLOnToAF9fX9jZ2aGsrAzXr1/Hjh078PLlS6SkpCAlJQVxcXEAvjzf3bhxY5iYmAj8ZSXoUZBPnz5Vp3uENBhfp0Da2NgITIFMT0/HsmXLAABnzpyBnp4eXwrk13c8BwQEwMrKCsbGxsw9CXFxcZgzZ07tXyAhUoZSIIVgbm6O8PBwrFmzBgsWLEBycjKaNm0KR0dHZl/pnTt38uwkVRGKceDAAXh5edW854RIgZ49e/KlQK5du5ZJgczMzORJgeRyudizZw+TAmloaIjJkyfzPP746dMnbNy4EVlZWVBTU0PLli2xefNmWFlZ1fr1EUIatnod8JSUlFTXXSCEENJAGBoaSvwcAwYMEFtbFy9eFFtbklKvsxsIIYSQ+kTWlhtk62oJIYQQIrR6PZNw6dKluu4CIYSQBkLQVubi1lCeShCXej1IIIQQQuoTWVtukEhUdNu2bbFq1Spcu3YNHz58gI6ODoYMGYLVq1dDQ0NDnP0npMGzsrKCvb09VFRUkJ2djUePHlWaEW9gYCDwxqnjx48jNzcXAGBpaQkLCwtmQ6aMjAw8efIE6enpkrsIQohUkkhU9MmTJ5GUlIS//voL1tbWeP/+PaZOnYqkpCScPHlS3NdASIPVvHlzODs748GDB0hNTUXr1q3h5uaGEydOCNysrMLx48d5NlAqKipi/tvQ0BBxcXFITU1FeXk57O3t4e7ujpMnT9Z4i1ZCZB0tNwjhe1HRmpqaOHXqFFPeokULrFmzBuPGjUNZWRnk5WmVgxAAaNOmDV69eoVXr14BAB49egRjY2NYW1vjyZMnlR5XWFhY6S6L//77L8/7e/fuwdzcHEZGRnj9+rX4Ok+IDKJBwndUNyo6NzcX6urqNEAg5H9YLBZ0dHTw7NkznvLExETo6elVeeywYcPAZrORnZ2Np0+fIjk5udK68vLyYLFYfAFqhBDyPbUSFZ2ZmYnVq1djypQpop6OEKmlrKwMFovFtwRQWFgIFRUVgccUFBTg7t27yMjIAJvNRqtWrdC/f39cvHix0vsY2rdvj8+fP1PAEyFiQDMJ3yFqVHReXh769+8Pa2trrFq1qtJ6gqKiS0tLoaCgIGoXCZFaFeFnFdLS0qCmpgY7OzuBgwQ7Ozu0aNECly5dQnl5eW12lRCpJGuDBIlGRefn58PNzQ2NGjXCmTNnqvyDLygq+sqVK6J2j5AGo6ioCBwOB6qqqjzlKioqKCwsFLqdtLQ0qKur85W3adMGDg4OuHLlCl8cNSGkemQtBVJiUdF5eXlwdXWFoqIizp8/D2Vl5SrbFRQV7e7uLmr3CGkwOBwOMjIyYGRkxFNuZGSE1NRUodvR1tbmG1TY2dmhXbt2CA4ORkZGhlj6SwiRPdXaFcLf3x/l5eXo0KEDTp06hdevX+Ply5fYsmULnJ2dkZ+fD1dXV3z+/Bn79u1DXl4eEx1d2ZSnkpIS1NXVeV601ECk3YsXL5h9DTQ1NdGpUyc0atSImalr3749unfvztS3tbWFqakp1NXVoaWlhfbt26N58+aIiopi6tjZ2cHJyQl37txBfn4+VFRUoKKiQjcNEyIGsjaTIJGo6LCwMDx+/BgA0LJlS55j3717BzMzsxp3nBBp8PbtWygpKaFdu3ZQVVVlnh769OkTAEBVVZXnKSIWi4WOHTtCTU0NZWVlyMnJQXBwMD58+MDUsba2BpvNRp8+fXjOFRYWhvDw8Nq5MEKkVEP54y4u9Toqes+ePXXdBUIIIQ1EbWQ3jB49Wmxt/fPPP2JrS1Jo/pEQQggRkqzNJNAggRBCCBESBTzVI9+uqRJCCCGk9tTrQQIhhBBSn9Byg5Cqioru1asXpkyZghs3biApKQmNGjWCi4sL1q1bJ9J2zoTIggsXLuDEiRPIysqCqakppk6dijZt2gisGxkZiX379uHDhw8oLi6Grq4u+vfvj2HDhjF1Fi1ahOfPn/Md26FDB6xevVpi10GILKBBghC+FxUdExMDR0dHjB07FiYmJsjKyoKPjw9cXV3x7t07sNlscV8HIQ3S7du3sXPnTsycORM2Nja4dOkSVqxYgT179kBXV5evvrKyMgYNGgRzc3MoKysjKioKmzdvhrKyMvr16wcAWLlyJcrKyphj8vLyMG3aNHTp0qXWrosQIh2q9Qhkv3798Pz5c7x69YovCTInJ0dgEuTz589hb2+PuLg4tGjRQqjzxMfHi9o1QhqU2bNno2XLlpg9ezZTNmnSJLi4uGDChAlCteHr6wtlZWUsXrxY4OenT5/G4cOHcezYse/ufEpIQ1Ybe/B4enqKra1Dhw6JrS1JEfk2zYrNXmbMmCF0VPTnz59x4MABmJubo1mzZtXqKCHSprS0FK9fv4ajoyNPuaOjI6Kjo4VqIy4uDtHR0ZUuTwDA1atX0a1bNxogECIGtOPid4gSFe3v74/Fixfj8+fPaN26Na5fvw5FRcVqdZQQaZOXlwcOh8M3sNbU1ER2dnaVx44dOxa5ubkoLy/HuHHjKs05iYmJQXx8PObNmyeubhMi0xrKH3dxkWhU9NixY9GnTx8kJyfjr7/+wqhRo/DgwQOB32gERUUXFxdDSUlJ1C4S0qB8+7MkzArghg0bUFhYiJcvX2L//v0wNDREjx49+OpdvXoVZmZmdMMwIaRaJBoVraGhgVatWqFr1644efIkYmJicObMGYF1BUVF79ixQ9TuEdJgqKurg8Vi8c0a5ObmQktLq8pj9fX1YW5ujn79+mHYsGE4cuQIX52ioiLcvn0bbm5uYu03IbJM1pYbJBYVLQiXy+WbLaggKCp62rRponaPkAZDQUEBrVq14gtdCg8Ph7W1tdDtcLlclJaW8pXfvXsXpaWl6NWrV437Sgj5QtYGCdV6BNLf3x8uLi7o0KEDfH19YWdnh7KyMly/fh07duzApUuXEBQUBFdXVzRt2hSJiYlYt24dVFRUmMe0vqWkpMS3tJCVlVWd7hHSYAwbNgx//vknLCwsYGVlhcuXLyMtLQ39+/cHAOzfvx8ZGRnMkwvnz5+Hrq4ucwNwZGQkTp48icGDB/O1HRwcDBcXF6irq9feBRFCpIpEoqKVlZVx7949bNq0CdnZ2dDT00PXrl0REhIi8NlvQmRV9+7dkZ+fj8DAQGYzpd9//x16enoAvgyU09PTmfpcLhf79+9HSkoK2Gw2DA0NMWHCBGZQUeHjx4+IiorCH3/8UavXQ4i0aygzAOJSr6OiaZ8EQgghwqqNfRImTZoktrb27t0rtrYkRbbirAghhBAiNAp4IoQQQoQka8sN9XqQEBcXV9ddIIQQ0kDUxnKDrA0SaLmBEEIIIQJJLCq6ApfLRb9+/RAcHIwzZ85gyJAh4ug3IVLj7t27uHHjBnJzc2FgYIARI0agZcuW3z3uzZs32LRpEwwMDLBs2TKezwoKCnDhwgVERESgoKAA2traGDZsGGxtbSV1GYTIBFmbSZBYVHSFTZs2ydw/KiHCCgsLw8mTJ+Hh4YEWLVrg/v372L59O1auXIkmTZpUelxhYSEOHToES0tL5OXl8XxWVlaGrVu3onHjxpg0aRKTBUEBT4TUnKz9PavWIGH69OmQk5PDf//9x5MEaWNjwxNv++zZM2zcuBFPnjyBgYFBzXtLiJS5efMmnJ2d0blzZwDAiBEjEB0djXv37gncIKnCsWPH4OTkBBaLhWfPnvF89vDhQxQUFGDhwoVgs9kAAG1tbcldBCEyRNYGCRKLii4oKMCPP/6Ibdu2QV9fv8YdJUTalJWV4cOHD7CysuIpt7Kywtu3bys97uHDh0hPT69099Lnz5/D3NwcQUFBWLp0KX7//XcEBweDw+GItf+EEOknsajoefPmwcXFpcpvQ18TlAJZUlJC0dJEan369AkcDodv2+TGjRvzLSFUSEtLw7lz5zBv3jxmluBbmZmZiI2NRfv27TF9+nSkpaXh+PHj4HA4lQ4sCCHCoZmE7xAmKvr8+fO4desWNm3aJHS7glIg//nnH1G7R4hUEPTzxeFwcODAAfTv35/ZtlkQLpeLxo0bY8yYMTAxMYGTkxP69u2Le/fuSbLLhMgECnj6jq+joit7UuHWrVt48+YNs/RQYfjw4ejSpQtu377Nd4y3tzfmz5/PU3b//n1Ru0dIg9GoUSOwWCy+WYP8/Hw0btyYr35RURESEhLw8eNHHD9+HMCXAQGXy8WsWbMwc+ZMWFpaQl1dHWw2GyzW/38H0NfXR15eHsrKyiAvX6+3RyGE1CMi/7b4Oip69uzZfPcl5OTkYOnSpXz7W7dp0wZ///03Bg4cKLBdQSmQtNRApJm8vDyaNWuGmJgYODg4MOUxMTGws7Pjq6+srIzly5fzlN29exexsbGYNGkSc3Ni8+bNERoaCg6HwwwU0tLSoKGhQQMEQmqoocwAiItEoqJfvnwp8GZFExMTmJub17jThEiLXr16ISAgACYmJmjevDnu37+PrKws/PDDDwCAc+fOIScnBz///DNYLBYMDQ15jm/cuDHk5eV5yrt27Yo7d+7g5MmT6NatG9LT03H16lV07969Ni+NEKlEgwQhfC8qmhAiHEdHR3z+/BlXrlxBXl4eDAwMMH36dGZWIDc3F9nZ2SK1qaWlhZkzZ+LUqVP4448/oKmpie7du8PV1VUSl0AIkWL1Oir6xo0bdd0FQgghDUTv3r0lfo7Zs2eLra0tW7aIrS1JoQVKQgghREiyttxAAU+EEEIIEahezyQIE3JDCCGE1BZZm0mQWApk9+7dcefOHZ5jPDw8aIMkQr5x4cIFnDhxAllZWTA1NcXUqVPRpk0bgXUjIyOxb98+fPjwAcXFxdDV1UX//v0xbNgwps6iRYvw/PlzvmM7dOiA1atXS+w6CJEFNEgQgrApkJMnT4avry9znIqKinh6TYiUuH37Nnbu3ImZM2fCxsYGly5dwooVK7Bnzx7o6ury1VdWVsagQYNgbm4OZWVlREVFYfPmzVBWVma2XF65ciXKysqYY/Ly8jBt2jR06dKl1q6LEGlVl4MEf39//Pnnn0hOToaNjQ02bdpU5c91cXExfH19ceTIEaSkpMDY2BjLly/nCWL8HommQKqqqlK4EyFVOH36NPr27Qt3d3cAwLRp0xAWFoaLFy8K/EFu2bIlzzKcvr4+Hjx4gMjISGaQ8G0WxO3bt6GsrIyuXbtK8EoIIZIUFBSEuXPnwt/fH507d8auXbvg7u6O6OhomJiYCDxm1KhRSE1Nxb59+9CyZUukpaXxfIEQhsRSIAEgMDAQOjo6sLGxwcKFC5Gfny/q6QiRWqWlpXj9+jUcHR15yh0dHREdHS1UG3FxcYiOjq50eQIArl69im7dukFZWblG/SWE1F12w8aNGzFx4kRMmjQJVlZW2LRpE5o1a1bp3kTBwcG4c+cOLl++jN69e8PMzAwdOnSAi4uLSOeVWArk2LFjYW5uDn19fURGRsLb2xvPnj3D9evXRT0lIVIpLy8PHA6HL+NEU1PzuxsojR07Frm5uSgvL8e4ceOYmYhvxcTEID4+HvPmzRNXtwmRaeJcbhCUfiwooqCkpARhYWFYunQpT7mrqytCQkIEtn3+/Hk4OTlh/fr1OHz4MNTU1DBo0CCsXr1apKV/kQcJwqRAAl/uR6hga2uLVq1awcnJCeHh4WjXrh1ffUH/WMXFxXz/WIRIm29/loTZ32zDhg0oLCzEy5cvsX//fhgaGqJHjx589a5evQozM7PvDuoJIbXPz88Pv/32G0/ZqlWr4OPjw1OWkZGB8vJyvvRXPT09pKSkCGz77du3uH//PpSVlXHmzBlkZGRg+vTpyMrKwv79+4Xuo8jLDV+nQIqiXbt2UFBQwOvXrwV+LigqmrZ4JtJMXV0dLBaLb9YgNzcXWlpaVR6rr68Pc3Nz9OvXD8OGDcORI0f46hQVFeH27dtwc3MTa78JkWUsFktsL29vb+Tm5vK8vL29Kz23oC8UlX1h53A4kJOTQ2BgIDp06IB+/fph48aNOHjwIAoLC4W/XqFr/s/XKZCfP3/m+zwnJ0fgcVFRUSgtLYWBgYHAzwX9Y02bNk3U7hHSYCgoKKBVq1YIDw/nKQ8PD4e1tbXQ7XC5XJSWlvKV3717F6WlpejVq1eN+0oI+UKc9yQoKSlBXV2d5yVo9lxHRwdsNptv1iAtLY1vdqGCgYEBjIyMoKGhwZRZWVmBy+Xi48ePQl9vtXZc9Pf3R3l5OTp06IBTp07h9evXePnyJbZs2QJnZ2e8efMGvr6+CA0NRXx8PC5fvoyRI0eibdu26Ny5s8A2hf3HIkSaDBs2DMHBwbh69SoSEhKwc+dOpKWloX///gCA/fv3Y/369Uz98+fP49GjR0hMTERiYiKuXr2KkydPomfPnnxtBwcHw8XFhe9pB0JIw6KoqAhHR0e+e/quX79e6Y2InTt3RlJSEj59+sSUxcbGgsViwdjYWOhzSyQFUlFRETdv3sTmzZvx6dMnNGvWDP3798eqVavAZrOrc0pCpFL37t2Rn5+PwMBAZjOl33//nfl2kJWVhfT0dKY+l8vF/v37kZKSAjabDUNDQ0yYMIEZVFT4+PEjoqKi8Mcff9Tq9RAi7epqn4T58+fjp59+gpOTE5ydnbF7924kJCRg6tSpAL7MxicmJuLQoUMAgDFjxmD16tUYP348fvvtN2RkZGDRokWYMGGCSDcu1usUyPj4+LruAiGEkAbCzMxM4ueo6p4BUfn5+YlU39/fH+vXr0dycjJsbW3x999/M/ufeHl5IT4+Hrdv32bqx8TEYNasWXjw4AG0tbUxatQo/P777zRIIIQQIntqY5CwbNkysbXVEGb6KAWSEEIIIQLV6xRIQgghpD6hgKd6JC0tra67QAghpIGojeUGGiQIycvLCwEBAXzlffv2RXBwMHbv3o2jR48iPDwc+fn5yM7O5tt+lhAC3LhxA5cuXUJubi6MjIwwbtw4WFpafve42NhYrFmzBsbGxlizZg1T/uTJE1y4cAGpqakoKyuDvr4+3N3d8cMPP0jyMgghUqhGMwlubm44cOAAT1nF3gYFBQVwc3ODm5ubWO8GJUSaPHr0CEeOHIGXlxdatWqFf//9F3/++SfWrl0LHR2dSo8rKCjArl27YGNjg9zcXJ7PGjVqhEGDBsHAwADy8vKIiIjAnj17oK6uDjs7O0lfEiFSjWYSRKCkpFRpFPTcuXMBgOdxDEIIrytXrqBbt27o3r07AGDcuHF48eIFbt68CQ8Pj0qP279/P5ydncFisRAWFsbzmZWVFc/7vn374t69e4iNjaVBAiE1JGuDBHq6gZA6UlZWhvj4eL6YZ1tb20ozToAv2y2npaVh6NCh3z0Hl8tFVFQUkpOThVrCIISQr9VoJuHixYto1KgRT9mSJUuwcuXKGnWKEFmQn58PDofDt22yhoYG3xJChZSUFAQFBWHFihVV7l5aUFCA2bNno6ysDCwWCz///DPfYIQQIjpZm0mo0SChR48efEmNTZo0qVZbgqKiS0pKoKioWO3+EdIQCJvsxuFw4O/vj2HDhlUalFZBWVkZa9asQVFREaKionD06FHo6uryLUUQQkRDgwQRqKmpoWXLlmLpiKBc7UmTJmHy5MliaZ+Q+qZx48ZgsVh8swZ5eXkCQ5kKCwvx7t07vH//ntmfncvlgsvl4ueff8bixYthY2MD4EucbUX+g6mpKZKSknDhwgUaJBBCRFJv9knw9vbG/PnzecqeP39eR70hRPLk5eVhZmaGyMhIODk5MeWRkZFo164dX30VFRW+bVxv3ryJ6OhozJo1C02bNq30XJXFSRNCRMNiydatfDUaJBQXF/PlW8vLy0NHRwcpKSlISUlBXFwcAODFixdo3LgxTExMBC5JKCkp8UVD01IDkXbu7u7YuXMnzM3N0bJlS/z777/IzMxEr169AABBQUHIzs7G1KlTwWKx0KxZM57j1dXVoaCgwFN+/vx5mJubQ09PD2VlZXj27BkePHgALy+v2rw0QqQSLTeIIDg4mG9t1NLSEjExMdi5cyfP8kFFUtWBAwfolxUh/9OpUyd8+vQJZ8+eRU5ODoyNjbFw4UJmj4ScnBxkZmaK1GZxcTECAgKQlZUFRUVFGBgYYOrUqejUqZMkLoEQmSJrg4R6nQL533//1XUXCCGENBAdOnSQ+Dl+//13sbW1YsUKsbUlKfXmngRCCCGkvpO1mQQaJBBCCCFCokFCPfL06dO67gIhhJAGojaWG2RNvR4kEEIIIfUJzSQIqaqo6KNHj2LVqlW4du0aPnz4AB0dHQwZMgSrV6+GhoZGjTpMiLSxtraGvb09VFVVkZ2djZCQEL5HiysYGBhg0KBBfOVBQUHIyckBAJibm6Nt27ZQV1dnNmt6/vx5lXkQhBDh0CBBBJVFRScmJiIpKQl//fUXrK2t8f79e0ydOhVJSUk4efJkjTpMiDRp0aIFXFxccP/+faSkpMDa2hr9+vXD8ePH8enTp0qP++eff1BSUsK8Lyoq4vnv8PBw5OTkgMPhwMTEBN27d0dhYSE+fvwo0eshhEgXiURFa2lp4dSpU8z7Fi1aYM2aNRg3bhzKysogL0+rHIQAQJs2bRATE4OYmBgAQEhICIyNjWFtbV3lI8CFhYU8g4SvJScn87yPjIyEhYUF9PX1aZBASA3RTIKE5ObmQl1dnQYIhPwPi8VC06ZNERERwVP+8eNHJnehMsOHDwebzUZOTg7Cw8ORlJRUaV0jIyNoamri8ePH4ug2ITKNBgkiEDYqOjMzE6tXr8aUKVNqcjpCpIqysjJYLBYKCwt5ygsLC6GqqirwmIKCAty5cwcZGRlgs9lo1aoVBgwYgAsXLvDMICgqKmLcuHFgsVjgcrm4f/8+EhMTJXo9hBDpI/Go6Ly8PPTv3x/W1tZYtWpVpW0JioouLS2FgoJCTbpISINU2Uaoubm5PKmRqampaNSoEezs7HgGCSUlJTh58iQUFBRgZGQEZ2dn5OXl8S1FEEJEQzMJIvheVHR+fj7c3NzQqFEjnDlzpso/+IKiovv374+BAwfWpIuE1FtFRUXgcDhQUVHhKVdRUeGbXahKamoqWrVqxVeel5cH4MtMnqamJtq2bUuDBEJqSNZSICV2tXl5eXB1dYWioiLOnz8PZWXlKut7e3sz35IqXm5ubpLqHiF1jsPhID09HcbGxjzlxsbGSE1NFbodHR0dFBQUVFlHTk4ObDa7Wv0khPw/OTk5sb0aAolERSspKcHV1RUFBQU4cuQI8vLymG81TZs2FfjLSlBUNC01EGn34sUL9OjRA+np6UhNTYWVlRUaNWqE6OhoAF92kFNTU8O///4L4MvTEPn5+cjKymLuSWjevDmuXbvGtOng4ID09HTk5eWBzWajWbNmaNWqFe7fv18n10gIabgkEhW9c+dO5k7qb5cj3r17BzMzs5qclhCp8ebNGygpKcHR0RGqqqrIysrClStXmD0SVFVVeW4OZrFY6NSpE9TU1FBWVobs7GxcvnwZHz58YOooKCigS5cuTJ2cnBz8+++/ePPmTa1fHyHSpqHMAIhLvY6K3rVrV113gRBCSANRG0/Qbdq0SWxtzZ07V2xtSYps3YFBCCGEEKHRzkaEEEKIkGRtuaFeDxJ69uxZ110ghBBCGLI2SKDlBkIIIYQIJJGo6ODgYEyZMgU3btxAUlISGjVqBBcXF6xbtw6tW7euUYcJkTaXLl3C6dOnkZWVBRMTE0yePBm2trYC60ZFReHgwYP4+PEjiouLoaurCzc3NwwZMoSpU1ZWhhMnTuDmzZvIzMyEkZERxo8fD0dHx1q6IkKkl6zNJEgkKhoAHB0dMXbsWJiYmCArKws+Pj5wdXXFu3fvaFMXQv7n7t272LNnD6ZNmwZra2tcuXIFPj4+8Pf3h66uLl99ZWVlDBgwAGZmZlBWVkZ0dDS2bdsGZWVlZvOxw4cP499//8WsWbPQrFkzhIeHY82aNfjzzz/RokWL2r5EQqQKDRJEUFlUNAD88ssvzH+bmZnh999/h729PeLj4+kXFSH/c/bsWfTp0wd9+/YF8OXnJjw8HJcvX4aXlxdf/RYtWvD8/Ojp6SEkJARRUVHMIOHff//FqFGj0L59ewBAv379EB4ejjNnzmDhwoWSvyhCiNSolXsSPn/+jAMHDsDc3BzNmjWrjVMSUu+VlpYiLi4Obdu25Slv27YtYmJihGrjzZs3ePnyJc/yRGlpKRQVFXnqKSoqMrs4EkKqj7ZlFsH3oqL9/f2xePFifP78Ga1bt8b169f5fnlVEJQCWVJSUml9Qhq6vLw8cDgcaGlp8ZRraWkhPDy8ymN//vln5ObmgsPh4Mcff2RmIgCgXbt2OHv2LGxsbGBgYIBnz57h8ePHKC8vl8h1ECJLGsofd3GRaFT02LFj0adPHyQnJ+Ovv/7CqFGj8ODBA4FhT4JSIGfOnInZs2fXpIuENDhcLve7v4jWrVuHoqIixMTEICAgAIaGhujWrRuAL0sWW7duxbRp0wAABgYG6N27N27cuCHxvhMi7WQtBVKiUdEaGhrQ0NBAq1at0KlTJ2hpaeHMmTP48ccf+ep6e3tj/vz5PGVf70dPiLRRV1cHi8VCdnY2T3lOTg40NTWrPLbiXiAzMzPk5OTg6NGjzCBBQ0MDK1asQElJCfLy8qCtrY2DBw9CT09PItdBCJFetTok4nK5fEsKFZSUlKCurs7zoqUGIs0UFBTQsmVLRERE8JRHRESI9Kgwl8tFaWkpX7mioiJ0dHRQXl6OkJAQdOzYsaZdJkTm0T0JIqgsKjovLw9BQUFwdXVF06ZNkZiYiHXr1kFFRQX9+vWrUYcJkSZDhgzBxo0b0bJlS1hZWSE4OBjp6enMz8nBgweRmZmJBQsWAPhyH1DTpk1hbGwMAIiOjsaZM2cwcOBAps1Xr14hMzMTzZs3R0ZGBo4ePQoOh4Phw4fX/gUSImUayh93cZFIVPStW7dw7949bNq0CdnZ2dDT00PXrl0REhIi8NlvQmRV165dkZ+fj3/++QdZWVkwNTWFj48P83OSnZ2N9PR0pj6Xy0VAQABSU1PBZrNhYGAALy8v5vFH4MsNv4cPH0ZKSgpUVFTg6OiIBQsW8N1kTAgh31Ovo6Jfv35d110ghBDSQLRq1Uri59izZ4/Y2po8ebLY2pKUeh3wRAghhNQnsvZ0g2xdLSGEEEKEVq9nEr6965sQQgipTG0sN9CNi4QQQggRiAYJQvpeVHQFLpeLfv36ITg4GGfOnOGJtCWECNaiRQtYWlpCWVkZeXl5iIiIQEZGhsC6TZs2Rffu3fnKg4ODkZ+fL+GeEkKkmcSioits2rRJ5kZehNSEsbExHBwcEB4ejoyMDDRv3hxdunRBcHAwCgsLKz3uypUrPJsqVbZxGSGk+mTt75nEoqIB4NmzZ9i4cSOePHnCt58CIUQwCwsLvHv3Du/evQPw5edIX18fLVq0QGRkZKXHFRcXC9x5kRAiPjRIEJOCggL8+OOP2LZtW5UDCULI/5OTk4OWlhZfVHRqaip0dHSqPLZPnz5gsVjIy8vDy5cveTZhIoSIBz0CKYKKqOivX6tXrwYAzJs3Dy4uLhg8eLBQbRUXFyMvL4/nRd+KiKxRUlICi8XiWyooKioSmJ4KAIWFhQgNDUVISAhCQkKQn5+Pbt26fXdQQQgh3yORqOjz58/j1q1bePr0qdBtCYqKHjFiBEaNGlWTLhLSIAnaCLWyzVE/ffqET58+Me+zsrKgqqoKS0vLSm92JIRUDy03iKCyqOhbt27hzZs3fHG3w4cPR5cuXXD79m2+YwRFRV+8eLEm3SOkwSkuLgaHw+GbNVBWVhbpRsTMzEyYmpqKu3uEyDxZGyRIZHFl6dKleP78OSIiIpgXAPz99998T0NUEBQVraCgIInuEVJvcblcJhTta3p6eiLNCmhpaaGoqEjc3SOE1CF/f3+Ym5tDWVkZjo6OuHfvXqV1b9++LTCe+tv7nb5HIlHR+vr6Am9WNDExgbm5eU1OSYjUi42NRceOHZGdnc1EPquqquLt27cAAFtbW6ioqODJkycAvuwy9/nzZ+Tl5YHFYsHExATGxsYICQmpy8sgRCrV1UxCUFAQ5s6dC39/f3Tu3Bm7du2Cu7s7oqOjYWJiUulxr169grq6OvO+adOmIp1XIlHRoo5UCCH/7+PHj1BSUoK1tTWzmdK9e/dQUFAAAFBRUYGqqipTn8Viwd7eHioqKigvL0dubi7u3bvHN4AnhNRcXT3dsHHjRkycOBGTJk0C8GUPoqtXr2LHjh3w8/Or9DhdXV2+pX9RVHuQcPDgQRw8eFDo+vU4kZqQeufNmzd48+aNwM8qZhAqvHr1Cq9evaqNbhFCxKi4uJjvXiMlJSW+TQlLSkoQFhaGpUuX8pS7urp+d8awbdu2KCoqgrW1NVasWIEePXqI1EfZeuCTEEIIqQFB6/zVffn5+UFDQ4PnJWhWICMjA+Xl5QLvVapsxtDAwAC7d+/GqVOncPr0aVhaWqJXr164e/euSNdLAU+EEEKIkMR5T4Kgp/q+nUWo6txcLrfS/lhaWsLS0pJ57+zsjA8fPuCvv/5C165dhe5jvR4kiHIhhBBCSEMiaGlBEB0dHbDZbL5Zg7S0NL7Zhap06tQJR44cEamP1V5u8PLyEjh94ubmBgDo3r0732ejR4+u7ukIkVpnzpzBqFGj0Lt3b0yaNAnPnj2rtO7z588xffp0DBgwAL1798a4ceNw/PjxSuvfvHkTXbt2xbJlyyTRdUJkjjiXG4SlqKgIR0dHXL9+naf8+vXrcHFxEbqdp0+fipyjJNEUyMmTJ8PX15d5r6KiUpPTESJ1bt68ia1bt2L+/PmwtbXF+fPnsXjxYhw6dEjgNwRlZWUMGzYMLVq0gLKyMl68eIG//voLysrKGDRoEE/dlJQU+Pv7w87OrrYuhxCpV1ePQM6fPx8//fQTnJyc4OzsjN27dyMhIQFTp04F8GXpIjExEYcOHQLw5ekHMzMz2NjYoKSkBEeOHMGpU6dw6tQpkc4r0RRIVVVVCncipArHjx9H//79MWDAAADA7Nmz8d9//+Hs2bOYMmUKX30LCwtYWFgw7w0MDHDnzh08f/6cZ5BQXl6O1atXY/z48Xj+/DnPts2EkOqrq0cgPTw8kJmZCV9fXyQnJ8PW1haXL19mdlZNTk5GQkICU7+kpAQLFy5EYmIiVFRUYGNjg0uXLqFfv34inVeiVxsYGAgdHR3Y2Nhg4cKFyM/Pl+TpCGlQSktLERsbi/bt2/OUt2/fvspI6K/FxsYiKioKDg4OPOUBAQHQ1NRkBh+EkIZv+vTpiI+PR3FxMcLCwnju2zt48CBP5MHixYsRFxeHwsJCZGVl4d69eyIPEIAaziRUpEB+bcmSJVi5ciXGjh0Lc3Nz6OvrIzIyEt7e3nj27Bnfmgohsio3Nxfl5eXQ0tLiKW/SpAmysrKqPHb48OHIyclBeXk5xo8fzzMYePHiBS5duoR9+/ZJpN+EyDJZy26QSAok8OV+hAq2trZo1aoVnJycEB4ejnbt2vG1JWhTieLiYqHu/CSkIRPlsaYKW7duRWFhIaKjo7Fr1y4YGRmhd+/eKCgowOrVq7Fo0aIa7bJGCBGMBgkiqCwFUpB27dpBQUEBr1+/FjhIEBQVvWDBAixatKgmXSSk3tLQ0ACbzeabNcjOzuabXfiWoaEhAKBFixbIysrCgQMH0Lt3byQmJiIlJQXe3t5MXQ6HA+DLoP7IkSMwMjIS85UQQqRVre2TEBUVhdLS0kofvxC0qUROTk4t9IyQuqGgoAALCwuEhobyrC2Ghobihx9+EKmt0tJSAF9C1L7dLn3v3r0oKCjA7NmzoaurW+N+EyLLaCZBBJWlQObm5iIwMBD9+vWDjo4OoqOjsWDBArRt2xadO3cW2JagTSUKCwtr0j1C6r1Ro0ZhzZo1sLS0hI2NDS5cuIC0tDQMHjwYALBr1y5kZGRg+fLlAIDTp09DT0+PSX178eIF/vnnHwwbNgzAl5+j5s2b85yj4r6hb8sJIaKrq6cb6opEUiCvX7+OmzdvYvPmzfj06ROaNWuG/v37Y9WqVWCz2TXqMCHSpFevXsjLy0NAQAAyMzNhbm6OdevWMY8OZ2ZmIjU1lanP5XKxe/duJCcng81mw9DQEFOmTOHbI4EQQsRBjluP4xm//uVICCGEVEWULYqr6+LFi2JrqyE8olyvsxsIIYSQ+kTW7kmQrcUVQgghhAitXs8k0JbOhBBChFUbq+eyNpNQrwcJhBBCSH0ia4MEkZcbKiKi165dy1N+9uxZ5h+vqKgIXl5eaNOmDeTl5TFkyBCxdJYQaTRt2jS8ffsWhYWFQu2RMGbMGERERODz589ISkrC/v37mZ1OAcDa2honT57Eu3fvwOVyMWfOHElfAiEyg8Viie3VEFSrl8rKyli3bh2ys7MFfl5eXg4VFRXMnj0bvXv3rlEHCZFmo0aNwqZNm7BmzRq0bdsW9+7dw5UrV9CsWTOB9Tt37oxDhw5h3759sLGxwciRI9G+fXvs3buXqaOqqoq3b99i6dKlSE5Orq1LIYRIoWoNEnr37g19fX34+fkJ/FxNTQ07duzA5MmT6b4CQqowf/587Nu3D/v27UNMTAzmzZuHDx8+YNq0aQLrd+rUCfHx8di6dSvi4+Px4MED7Nq1C05OTkyd0NBQLF68GEFBQXx5KISQmpGTkxPbqyGo1iCBzWbjjz/+wNatW/Hx40dx94kQmaCgoABHR0dcu3aNp/zatWtwcXEReExISAiMjY3h7u4OANDV1cWIESNw6dIlifeXEEKDBKENHToUDg4OWLVqlTj7Q4jM0NHRgby8PN+mYampqZXOwD18+BBjx45FUFAQSkpKkJqaipycHMyaNas2ukwIkTE1unNi3bp1CAgIQHR0dI07UlxcjLy8PJ4XIbLg28e25OTkKn2Uy8rKClu2bIGvry8cHR3Rt29fmJubY+fOnbXRVUJkHs0kiKBr167o27cvli1bVuOO+Pn5QUNDg+dFiDTLyMhAWVkZ36yBrq5upVuSe3t748GDB/jrr7/w4sULXLt2DdOnT8fEiRPp/h9CagE93SCitWvX4sKFCwgJCalRO97e3sjNzeV5ESLNSktLERYWhj59+vCU9+nTp9KfJ1VVVXA4HJ6y8vJyALL3/DYhRPJqvJlSmzZtMHbsWGzdupWnPDo6GiUlJcjKykJ+fj4iIiIAAA4ODgLbERQVTYi027hxIw4fPozQ0FA8fPgQv/zyC0xMTJjlgz/++ANGRkb4+eefAQAXLlzAnj17MHXqVFy9ehUGBgbYtGkTHj9+zDzuqKCgAGtrawCAoqIijIyMYG9vj0+fPuHNmzd1c6GESAlZG4yLnALp5eWFnJwcnD17lil7//49LC0tUVxczKylmpmZ4f3793zHi3I6WfufQWTTtGnTsHjxYhgYGCAyMhLz5s3DvXv3AAAHDhyAmZkZevTowdSfOXMmpk6dCnNzc+Tk5ODWrVtYsmQJkpKSAACmpqaIj4/nO8/t27d52iFE2tTGtsz//vuv2NpqCD+P9ToqmgYJhBBChEWDBPGj7AZCCCFESLL25ZUGCYQQQoiQaJBQj1DuAyGEkPpE1gYJDeNBTUIIIYTUOolERd++fRuDBw+GgYEB1NTU4ODggMDAQPH0mBApM3DgQBw6dAiXLl3C9u3bYWtrW2V9BQUFjB8/HkeOHMGlS5cQEBCAvn37Mp+z2WyMGzcOAQEBuHTpEnbu3MkTAEUIqT5Z23GxWssNFVHRU6ZMgZaWFt/nISEhsLOzw5IlS6Cnp4dLly7B09MT6urqGDhwYI07TYi06NatG6ZNm4atW7ciKioK/fv3xx9//IGJEyciPT1d4DErVqyAlpYWNmzYgKSkJGhqaoLNZjOfjx8/Hr169cLff/+NhIQEODk5wcfHB3PmzKF9EgipoYbyx11cJBIVvWzZMqxevRouLi5o0aIFZs+eDTc3N5w5c6ZGnSVE2gwfPhzBwcG4cuUKEhISsGPHDqSnp1c6mHZycoKdnR2WL1+Op0+fIjU1Fa9eveLJT+nduzeOHTuG//77DykpKbh48SJCQ0MxYsSI2rosQoiUqLWo6NzcXDRp0qQ6pyNEKsnLy8PCwgJhYWE85WFhYbCxsRF4jLOzM2JjYzFq1CgcO3YMBw4cwC+//AJFRUWmjoKCAkpKSniOKykp+e4yBiHk+2RtuaFWoqJPnjyJJ0+eYPz48dU9HSFSR0NDA2w2G9nZ2Tzl2dnZApfxAMDAwAC2trYwMzODj48PduzYgS5duvBERYeGhmL48OEwMjKCnJwc2rVrB2dnZxqkEyIGNEgQgTBR0bdv34aXlxf27NlT6bcjQHBU9LdBNoRII1GiolksFrhcLvz8/PDq1Sv8999/2LVrF1xdXZnZBH9/fyQmJmLfvn24cuUKZs6ciWvXrtHPEyFEZBKNir5z5w4GDhyIjRs3wtPTs8q2BEVFv3v3ribdI6Rey83NRXl5Od83fE1NTeTk5Ag8JjMzExkZGSgoKGDKEhISwGKx0LRpU6ZdHx8fDBw4EGPHjsWECRNQWFiIlJQUiV0LIUQ6SSwq+vbt2+jfvz/Wrl2LX3755bvtCIqKNjc3r2n3CKm3ysrKEBsbi3bt2vGUt2vXDlFRUQKPiYqKgra2NpSVlZkyIyMjlJeX8z0NUVpaiszMTLDZbPzwww94+PCh+C+CEBkja8sNEomKrhggzJkzB8OHD2e+wSgqKla6LiooKprFor2eiHQ7deoUlixZgtjYWLx8+RL9+vWDrq4uLl68CACYMGECdHR0sH79egDArVu3MHbsWCxatAgBAQHQ0NDAL7/8gqtXrzI3K7Zu3Ro6OjqIi4uDjo4OPD09wWKxEBQUVGfXSQhpmMSyLfPq1atx/Phx5v3BgwdRUFAAPz8/nscku3Xrhtu3b4vjlIRIhTt37kBdXR3jxo1DkyZNEB8fj+XLlyMtLQ0AoK2tDV1dXaZ+UVERli5dihkzZmD79u3Iy8vD3bt3ceDAAaaOoqIivLy8YGBggMLCQvz3339Yt24dPn/+XOvXR4i0aSgzAOJSr6Oi+/TpU9ddIIQQ0kBcv35d4ud4/Pix2Nrq2LGj2NqSlHod8EQIIYTUJ7I2k0CL/oQQQggRqF7PJLi7u9d1FwghhBCGrM0k1OtBAiGEEFKf0CDhO7y8vBAQEAA/Pz8sXbqUKT979iyGDh0KLpeLV69eYerUqYiOjkZubi4MDQ0xZswYrFq1CgoKCmK9AEIaOnt7ezg5OUFNTQ2ZmZm4ffs2EhMTBdY1NjbGqFGj+MoPHDjAbO9sbW0NNzc3vjqbN29GeXm5eDtPCJFqEomKVlBQgKenJ9q1awdNTU08e/YMkydPBofDwR9//FHjThMiLSwsLNC9e3fcvHkTSUlJsLOzw9ChQxEQEID8/PxKj9u/fz9PiFNhYSHP58XFxTyPRQKgAQIhYkAzCULo3bs34uLi4Ofnx2zy8rXmzZujefPmzHtTU1Pcvn0b9+7dq35PCZFCjo6OiIyMRGRkJIAvG5GZmprC3t4e9+/fr/S4wsJCFBcXV/o5l8vl2bqZEEKqo1qDhIqo6DFjxmD27NkwNjausn5cXByCg4MxbNiwanWSEGnEYrGgp6eHJ0+e8JS/f/8ehoaGVR47btw4sNlsZGVl4fHjx/jw4QPP54qKipg0aRLk5OSQnp6OBw8e8G3bTAgh3yPRqGgXFxcoKyujVatW6NKlC3x9fSutKygFsqysrLrdI6TeU1FRAYvF4tsJsaCgAKqqqgKP+fz5M65fv44LFy7gwoULyMrKwogRI2BkZMTUyc7OxtWrV3H27FlcvnwZZWVlGD16NDQ1NSV5OYTIBFnLbpBoVHRQUBDCw8Nx9OhRXLp0CX/99VelbQlKgbx582ZNukeI1MnOzsaLFy+QlpaG5ORk3Lp1C2/fvoWTkxNTJzk5GS9fvkRGRgYSExNx8eJFZGdno23btnXYc0KkAw0SRPC9qOhmzZrB2toaP/74I9auXQsfH59Kb54SlALZq1evmnSPkHqtsLAQHA4HampqPOWqqqoi3U+QnJz83VmC1NRUmkkghIisxvskrF27Fg4ODrCwsKiyHpfLRWlpKSqLihCUAikvT9s4EOnF4XCQmpoKExMTxMXFMeWmpqZ48+aN0O3o6up+N7ypadOmyMjIqHZfCSFfNJQZAHGRSFR0YGAgFBQU0KZNGygpKSEsLAze3t7w8PCgP/yEfCUsLAzu7u5ITU1FcnIy2rRpg8aNG+PZs2cAgB9++AGNGjVCcHAwAKBt27bIy8tDZmYm2Gw2rKysYGFhgfPnzzNtdurUCcnJycjJyYGioiLatm2Lpk2b4tatW3VyjYRIExokVMO3UdHy8vJYt24dYmNjweVyYWpqihkzZmDevHniOB0hUiM2NhYqKiro1KkTs5nSmTNnmD0S1NTU0LhxY6Y+m81Gt27d0KhRI5SVlSEjIwNnzpzBu3fvmDpKSkro06cPVFVVUVJSgrS0NBw/fhwpKSm1fn2ESBtZGyTU66jojRs31nUXCCGENBDz58+X+DmeP38utrbs7OzE1pak0Nw/IYQQIiRZm0mgQQIhhBAiJBok1CN9+/at6y4QQggh9YK/vz/+/PNPJCcnw8bGBps2bUKXLl2+e9yDBw/QrVs32NraIiIiQqRz1mifBEIIIUSW1NVmSkFBQZg7dy6WL1+Op0+fokuXLnB3d0dCQkKVx+Xm5sLT07Pa+w6JPEjw8vKCnJwc1q5dy1N+9uxZgRcdFxeHxo0b00YuhIjgypUrmDp1Kjw8PLBw4cJKdzX91suXLzFixIhauYGLEFJ7Nm7ciIkTJ2LSpEmwsrLCpk2b0KxZM+zYsaPK46ZMmYIxY8bA2dm5Wuet1kxCRVR0RX59ZUpLS/Hjjz8KNR1CCPni/v37OHDgAIYPH44NGzbAysoKv//++3cDmj5//owtW7Y0iDumCSHCKykpQVhYGFxdXXnKXV1dERISUulxBw4cwJs3b6rMWPqeag0SevfuDX19ffj5+VVZb8WKFWjdujVGjRpVrc4RIosuXLiAXr16oU+fPjA2NsbEiROhra2Nq1evVnnczp070aVLl+/ufkoIqT5xLjcICjYUFAGfkZGB8vJy6Onp8ZTr6elVuv/J69evsXTpUgQGBtZoE8NqDRIqoqK3bt2Kjx8/Cqxz69YtnDhxAtu3b6925wiRNaWlpXjz5g3s7e15yh0cHBATE1PpcTdv3kRKSgo8PDwk3UVCZJo4BwmCgg2r+vL97ZI+l8sVuMxfXl6OMWPG4Lfffqvxl4ZqDy++joret28fz2eZmZnw8vLCkSNHoK6uLlR7xcXFfCOokpISKCoqVreLhDQ4+fn54HA4fPfwaGhoICcnR+AxSUlJOHLkCNasWQM2my35ThJCxMLb25vv/qFvM4wAQEdHB2w2m2/WIC0tjW92AfjyeyQ0NBRPnz7FzJkzAXzJiuFyuZCXl8e1a9fQs2dPofookajoyZMnY8yYMejatavQbQkaUe3Zs6cm3SOkwRL07aCybwx///03Ro8eDUNDw9roGiEyTZwzCUpKSlBXV+d5CRokKCoqwtHREdevX+cpv379OlxcXPjqq6ur48WLF4iIiGBeU6dOhaWlJSIiItCxY0ehr7dG+yR8HRXt5eXFlN+6dQvnz5/HX3/9BeDLlAiHw4G8vDx2796NCRMm8LUlaEQlShIeIdKgcePGYLFYfDcF5+bmQkNDg69+UVER3rx5g3fv3jGDai6XCy6XixEjRmDVqlVo06ZNrfSdEFlQV5spzZ8/Hz/99BOcnJzg7OyM3bt3IyEhAVOnTgXw5W9oYmIiDh06BBaLBVtbW57jdXV1oayszFf+PRKJin748CHKy8uZ9+fOncO6desQEhICIyMjge0IioqmpQYiaxQUFNCiRQs8e/YMnTp1YsqfPXuGDh068NVXUVHB33//zVMWHByMyMhILFy4UOBUJCGk+upqkODh4YHMzEz4+voiOTkZtra2uHz5MkxNTQEAycnJ390zoTokEhVtZWXFUyc0NFTgyIYQwm/gwIHYsmULWrZsCUtLS1y7dg0ZGRnM409HjhxBZmYm5syZAxaLxfySqKChoQEFBQW+ckJIwzZ9+nRMnz5d4GcHDx6s8lgfHx/4+PiIfE6JREUTQqrvhx9+QH5+Po4fP47s7GyYmJhg+fLl0NXVBQBkZ2cjIyOjjntJiGySteyGeh0VHRUVVdddIIQQ0kDY2NhI/ByvX78WW1utWrUSW1uSQtkNhBBCCBGoXqdAEkIIIfWJrC031OtBgra2dl13gRBCCGHI2iBBIimQ8fHxAjeOCA4OFk+vCZEiZ86cgYeHB/r06YPJkyfj2bNnldZ9/vw5ZsyYgYEDB6JPnz746aef+G4avnLlCrp168b3ErQnPCGEVKVaMwkVKZBTpkyBlpZWpfVu3LjBcyNJkyZNqnM6QqTWrVu3sG3bNsybNw+2tra4cOEClixZgoCAAIF7HCgrK2Po0KFo0aIFlJWV8eLFC2zYsAHKysoYNGgQU09NTQ2HDx/mOVbQTm6EEFIViaZAamtrQ19fn3nR5kiE8Dp+/Dj69euHAQMGwMzMDLNmzULTpk1x7tw5gfUtLCzQu3dvmJubw8DAAK6urmjfvj2eP3/OU09OTg7a2to8L0JIzYlzW+aGQGIpkAAwaNAg6OrqonPnzjh58mS1O0mINCotLUVsbCzat2/PU96+fXtERkYK1UZsbCyioqLg4ODAU15YWIhRo0ZhxIgRWLp0KWJjY8XVbUKIDJFICmSjRo2wceNGdO7cGSwWC+fPn4eHhwcCAgIwbty4GneaEGmQm5uL8vJyvmU4LS0tZGVlVXnsiBEjkJOTg/Lycnh5eWHAgAHMZyYmJli6dCmaN2+Oz58/49SpU5g5cyb2798PY2NjiVwLIbKiocwAiEuNnm5Yt24devbsiQULFvCU6+joYN68ecx7JycnZGdnY/369ZUOEgRFRRcXF9M6KpFJ3/tFtHXrVhQUFCA6Ohq7d++GkZERevfuDeDLhjJf3wvUpk0bTJ48GadOncKcOXMk2m9CpJ2sDRJqtJnS1ymQ39OpU6cqd6oSFBX9dR4EIdJGQ0MDbDabb9YgOzu7yhuCAcDAwAAtWrTAwIEDMXLkyCr3bWexWLC0tKxyaZAQQgSp8Y6La9euxYULFxASElJlvadPn8LAwKDSz729vZGbm8vzmjVrVk27R0i9paCgAAsLC4SGhvKUh4aGihSGxuVyUVpaWuXncXFxdPMiIURkEkmBDAgIgIKCAtq2bQsWi4ULFy5gy5YtWLduXaXtCIqKLigoqGn3CKnXRo0ahTVr1sDS0hI2Nja4ePEi0tLSmMcZd+/ejfT0dCxfvhzAlz0VdHV1mYTH58+fIygoCMOGDWPaPHjwIKytrWFsbMzckxAXF8ezBEgIqR5ZW26QWArk77//jvfv34PNZsPCwgL79++nmxYJ+UbPnj2Rm5uLQ4cOITMzE+bm5li3bh309fUBAJmZmUhLS2Pqczgc7NmzB8nJyWCz2TA0NMQvv/zCs0fCp0+f8NdffyErKwtqampo1aoVtmzZwhfhTggRnawNEup1CmRKSkpdd4EQQkgDUTG4lqSEhASxtWViYiK2tiSFUiAJIYQQIlC9DngihBBC6hNZW26o14MEynoghBBC6k69HiQQQggh9YmszSRU656EDx8+YOLEiTA0NISioiJMTU0xZ84cZGZmMnVOnz6Nvn37QkdHB3JycoiIiBBXnwmRKv/88w/c3Nzg6OiIUaNGISwsrNK6N27cwOTJk9G1a1d06tQJY8eOxYMHD/jqHT58GAMHDoSTkxN69+6NdevWUVQ0IWJAAU/f8fbtWzg5OSE2NhbHjh1DXFwcdu7ciZs3b8LZ2ZnZPe7z58/o3Lkz1q5dK/ZOEyItgoODsW7dOkyePBknTpyAo6Mjpk2bhuTkZIH1w8LC4OzsDH9/fwQFBaFDhw6YOXMmXr58ydS5ePEiNm3ahKlTp+LcuXPw9fXF1atXsWnTplq6KkKItBD5EUh3d3dERkYiNjYWKioqTHlKSgpatGgBT09P7NixgymPj4+Hubk5nj59ypdU9z0lJSUi1SekoRkzZgysrKywcuVKpmzQoEHo2bMn5s6dK1QbQ4YMQd++fTFt2jQAwJo1a/Du3Tvs3buXqfPnn38iMjISAQEBYu0/IfWJoqKixM+RmJgotraMjIzE1pakiDSTkJWVhatXr2L69Ok8AwTgy/OpY8eORVBQEOrx1guE1BulpaWIjo6Gi4sLT7mLi4vQy3McDgefP3+GhoYGU9auXTtER0fjxYsXAL4sD967dw9dunQRW98JkVWyttwg0o2Lr1+/BpfLrXTnNisrK2RnZyM9PR26urpi6SAh0io7Oxvl5eV8mQra2to89/dUJSAgAIWFhejbty9T5u7ujqysLHh6egIAysrK4OHhgUmTJomv84TIqIbyx11cxPp0Q8UMQnX+EQVFRcvJyVFUNJE5ws7EXb58GTt27MDmzZt5BhpPnjzBnj17sGLFCrRp0wYfPnzA2rVroaOjg6lTp0qq24QQKSTSckPLli0hJyeH6OhogZ/HxMRAS0sLOjo6IndEUFT0+vXrRW6HkIZCS0sLbDabb9YgKyvru4mNwcHBWLVqFf766y84OzvzfLZt2zYMHDgQw4cPh4WFBXr16oXZs2dj37594HA4Yr8OQmSJrC03iDRI0NbWRp8+feDv74/CwkKez1JSUhAYGAgPD49qXbygqOjFixeL3A4hDYWCggKsra3x8OFDnvKHDx9WeZPv5cuXsWLFCqxduxZdu3bl+7ywsJDvZ5DNZoPL5dL9QoQQkYi83LBt2za4uLigb9+++P3332Fubo6oqCgsWrQIRkZGWLNmDYAv34YSEhKQlJQEAHj16hWALzc4CgrhEBQVTU83EGnn6ekJb29v2NjYwN7eHidOnEBycjJGjRoFANi0aRPS0tLwxx9/APgyQFi+fDmWLFkCe3t7ZGRkAPjy89O4cWMAQPfu3XHo0CFYWVmhTZs2SEhIwLZt29C9e3ew2ey6uVBCSINUrRTI9+/fw8fHB8HBwcjMzIS+vj6GDBmCVatWMdOkBw8exPjx4/mOXbVqFXx8fIQ6Dw0SiCz4559/cODAAaSnp6Nly5ZYvHgxnJycAADLly9HUlISDhw4AAAYP348QkND+doYNGgQM0AvKyvDnj17cOHCBaSlpUFLSwvdunXD7Nmzoa6uXnsXRkgtq41HIFNTU8XWlp6entjakpR6HRVNgwRCCCHCqo1BQlpamtjaaghPAVJUNCGEEEIEokECIYQQQgSq1ymQ9LgWIYSQ+qShPLooLjSTQAghhBCBJBIVXVpaiiVLlqBNmzZQU1ODoaEhPD09mcchCSH/LygoCO7u7mjfvj1Gjx6N8PDwSuveuHEDU6ZMQffu3eHi4oKffvqJLyq6tLQUO3fuRP/+/dG+fXuMHDlSYJw0IUR0tJnSdwgTFV1QUIDw8HCsXLkS4eHhOH36NGJjYzFo0CBJXAMhDVZwcDDWr1+PyZMnIygoCO3atcP06dMrjYoODw9Hp06dsG3bNhw7dgzt27fH7NmzeaKit23bhpMnT2Lp0qU4c+YMRo4ciXnz5vHUIYRUj6wNEiQeFV3hyZMn6NChA96/fw8TExOhzlVUVCRK1whpcMaOHQsrKyusWLGCKRsyZAh69OiBOXPmCNXG0KFD0bdvXyaXoXfv3pg0aRJGjx7N1Jk7dy5UVFTg5+cn3gsgpB5RVlaW+DmEDV8Txve2X68Pai0qOjc3F3JyctDU1KxRhwmRFqWlpXj58iVf9oKzszOePXsmVBscDgcFBQU8UdElJSV8z4srKSkJHT9NCCEVRBokiBIV/bWioiIsXboUY8aMoR3fCPmfqqKiK7Zb/p5Dhw6hsLAQrq6uTJmLiwsOHz6M9+/fg8Ph4OHDh7h9+zbfzyUhRHSyttwg8ajo0tJSjB49GhwOB/7+/pUeKygqmsvlUlQ0kXrf/rLgcrlC/QK5cuWKwKjoxYsXw9fXF0OGDIGcnByMjY0xePBgnDt3Tux9J0TWNJQ/7uIi0ajo0tJSjBo1Cu/evcP169ernEUQFBX9559/itI9QhqUiqjob2cNhI2K9vHxwZ9//olOnTrxfNakSRNs2rQJjx49wpUrV3Du3DmoqKjA0NBQ7NdACJFuEouKrhggvH79Gjdu3PjuLz1BUdGLFi0S/YoIaSAUFBRgZWWFR48e8ZQ/evQI9vb2lR535coV/Prrr/Dz8xMYFV1BSUkJenp6KCsrw82bN9GjRw+x9Z0QIhskEhVdVlaGESNGIDw8HBcvXkR5eTlSUlIAfPmWIyiEQ1BUND3dQKTdTz/9hOXLl8Pa2hr29vY4deoUkpOTMXLkSADA5s2bkZaWxiQ8XrlyBStWrMDixYthZ2cnMCr6+fPnSEtLQ+vWrZGWloYdO3aAw+HAy8urTq6REGkia8sNEomKjo+Ph7m5ucBj//33X3Tv3l2o89AggciCoKAgHDx4kImKXrRoERwdHQEAK1euRFJSEvbt2wcAmDhxYqVR0atXrwYAhIaGYs2aNfj48SNUVVXxww8/YM6cOQ0icY6QmqiNRyBzcnLE1lZDeNqvXkdF0yCBEEKIsGpjkJCbmyu2tr5+dLm+ouwGQgghhAhEgwRCCCGECFSvo6JfvHhR110ghBDSQLRv317i55C1GxdpJoEQQgghAkkkKhoAfHx80Lp1a6ipqUFLSwu9e/fG48ePxdZxQqTF9evXMW/ePIwfPx4rVqxATEyMUMfFxsbC09MTy5Yt4yl/8uQJVq5ciV9++QUTJ07EsmXLcP/+fUl0nRCZQ9syf8fbt2/h7OwMCwsLHDt2jGefhCtXruDRo0do0qQJLCwssG3bNjRv3hyFhYX4+++/4erqiri4ODRt2lQS10JIg/Po0SMcOXIEXl5esLCwwK1bt/Dnn39i3bp1zM6lghQUFGDnzp2wsbHhu9taTU0NgwYNgqGhIeTl5fH06VPs3r0b6urqsLOzk/QlEUKkSK1FRefl5UFDQwM3btxAr169hDrXkydPROkaIQ3OqlWrYGZmhvHjxzNlixcvhqOjIzw8PCo9btu2bdDT0wOLxUJYWBj++OOPKs+zfPlyODg4MJs0ESKNauOehPz8fLG1VbEBWn1WK1HRJSUl2L17NzQ0NKrcbpYQWVJWVoZ3797B1taWp9zW1havX7+u9Lg7d+4gNTUVw4YN++45uFwuIiMjkZKSgtatW9e4z4TIOlpuqIIoUdG6urq4ePEiRo8ejYKCAhgYGOD69euVTqEKSoEsKSkRuIUzIdIgPz8fHA6Hb0MVDQ2NSnd1S0lJQVBQEFauXAk2m11p2wUFBZg1axbKysrAYrHg5eWFNm3aiLP7hBAZINanG76Niu7RowciIiIQEhICNzc3jBo1CmlpaQKPFZQCefDgQXF2j5B6SdA3CkFlHA4H27dvx/Dhw2FgYFBlm8rKylizZg18fX0xcuRIBAYGVpreSghpGPz9/WFubg5lZWU4Ojri3r17lda9f/8+OnfuDG1tbaioqKB169b4+++/RT6nSDMJX0dFDxkyhO/zb6Oi1dTU0LJlS7Rs2RKdOnVCq1atsG/fPnh7e/Md6+3tjfnz5/OU0T4JRJo1btwYLBaLb9YgNzdX4HathYWFePfuHd6/f4+AgAAAXwbmXC4Xnp6eWLJkCWxsbAAALBYL+vr6AABTU1MkJibiwoULsLa2luxFESLl6mqZICgoCHPnzoW/vz86d+6MXbt2wd3dHdHR0TAxMeGrr6amhpkzZ8LOzg5qamq4f/8+pkyZAjU1Nfzyyy9Cn1ekQcLXUdHz5s3ju3ExMDAQnp6elf4jcrlcviWFCoJSIGmpgUgzeXl5mJubIzIykueGq8jISCbg6WsqKirw8/PjKbtx4waio6Mxe/bs7z41VFpaKp6OE0Jq3caNGzFx4kRMmjQJALBp0yZcvXoVO3bs4Pu9AABt27ZF27ZtmfdmZmY4ffo07t27J9IgQeTlhm3btqG4uBh9+/bF3bt38eHDBwQHB6NPnz5MVPTnz5+xbNkyPHr0CO/fv0d4eDgmTZqEjx8/0t3VhHzF3d0dt2/fxp07d5CYmIgjR44gMzOTeQIoKCgIO3fuBPBldqBZs2Y8L3V1dSgoKKBZs2ZMuM358+fx4sULpKWlISkpCZcvX2amHgkh9UdxcTHy8vJ4XoK+SJeUlCAsLAyurq485a6urggJCRHqXE+fPkVISAi6desmUh9F3iehVatWCA0NhY+PDzw8PPiiops0aYKioiLExMQgICAAGRkZ0NbWRvv27XHv3j1mOpQQAnTq1An5+fk4c+YMcnJyYGxsjEWLFjFLdjk5OcjIyBCpzeLiYhw8eBBZWVlQVFSEoaEhpk2bhk6dOkniEgiRKeJcbvDz88Nvv/3GU7Zq1Sr4+PjwlGVkZKC8vBx6eno85Xp6ekhJSanyHMbGxkhPT0dZWRl8fHyYmQhh1euoaNongRBCiLBqY5+EgoICsbXFZrP5Zg4ELb0nJSXByMgIISEhcHZ2ZsrXrFmDw4cPV7lL67t37/Dp0yc8evQIS5cuxbZt2/Djjz8K3cd6HfBECCGESCtBAwJBdHR0wGaz+WYN0tLS+GYXvmVubg4AaNOmDVJTU+Hj4yPSIIECngghhBAh1cVmSoqKinB0dMT169d5yq9fvw4XFxeh26nq4YHK1OuZhNqYOiKEEELqu/nz5+Onn36Ck5MTnJ2dsXv3biQkJGDq1KkAvmwjkJiYiEOHDgEAtm/fDhMTE2an1fv37+Ovv/7CrFmzRDqvxFIgvzZlyhTIyclh06ZN1TkdIVItMDAQPXv2RJs2bTBs2DCEhoZWWvfatWsYP348OnXqhHbt2sHDw4NvQ5XTp0/D0tKS7yXqNwhCSP3h4eGBTZs2wdfXFw4ODrh79y4uX74MU1NTAEBycjISEhKY+hwOB97e3nBwcICTkxO2bt2KtWvXwtfXV6Tzinzj4tcpkL///jtPCmRJSQmTAlnh7Nmz8PHxQXp6OhYtWoS5c+eK1EFCpNnly5exePFirFq1Cu3atcM///yDkydP4tKlSzA0NOSrv2bNGujq6qJjx45QV1fH6dOnsX//fhw/fpzZKOn06dNYs2YNgoODeY6l9FVCaq6oqEhsbVU8tlyfibzcMGPGDCgqKuLatWvMZkomJiZo27YtWrRogeXLlzMpkImJiZg5cyauXr2K/v37i7fnhEiBAwcOYPjw4cz+IcuXL8f9+/dx7NgxLFiwgK/+8uXLed7Pnz8fN2/exK1bt3h2U5STk6NBASGkxiSWAsnhcPDTTz9h0aJFtDcCIQKUlJQgKioKP/zwA095586d8fTpU6Ha4HA4+Pz5MzQ1NXnKCwoK0KNHD3Tt2hVTpkyh3AZCSLVILAVy3759kJeXx+zZs8XSUUKkTXZ2NsrLy6Gtrc1TrqOjg/T0dKHa2L9/PwoLC+Hu7s6UNW/eHH5+frC0tMSnT59w6NAh/Pjjjzh37hzMzMzEeQmEECkn1qcbKm5vePfuHTZv3ozw8HChH/MQFBUt7DOkhDRk3/6McLlcoX5uLl68iG3btsHf359noOHg4AAHBwfmfbt27TB06FAcOXIEK1asEFu/CZFFdRXwVFdEWm74OgVSkIoUyJCQEKSlpcHExATy8vKQl5fH+/fvsWDBgkq/yQiKihYUWkGItNDS0gKbzebbdjkzM5PZlrkyly9fxvLly7Fp06bvPifNYrHQpk0bxMfH17TLhBAZI9Ig4esUyMLCQp7PKlIgPTw84OnpiefPnyMiIoJ5GRoaYtGiRbh69arAtr29vZGbm8vzEhQpTYi0UFRUhI2NDR48eMBTHhISwpPe9q2LFy9i6dKl2LBhA7p37/7d83C5XLx8+ZJuZCSEiEzk5YZt27bBxcUFffv25XsEsiIFskmTJnzrrAoKCtDX14elpaXAdmlpgcii8ePHY/HixbC1tUXbtm0RFBSE5ORkjB49GgCwYcMGpKamYv369QC+DBCWLFmCZcuWwd7enrl3QVlZGY0bNwbw5WfU3t4eZmZmzD0JMTExWLVqVd1cJCFSRNaWGySSAkkIEU6/fv2QnZ0Nf39/pKWlwcLCArt374aRkREAID09HcnJyUz9oKAglJWVwdfXl2dTlKFDh2Lt2rUAgLy8PPz6669IT09H48aNYW1tjSNHjsDOzq52L44Q0uDV6xRIQgghpD4pKSkRW1uKiopia0tS6nV2AyGEEFKfyNpyA6VAEkIIIUSgej2T8OnTp7ruAiGEkAaiUaNGdd0FqVOvBwmEEEJIfULLDUIQJiray8sLcnJyPK9OnTqJreOESIvjx49j4MCBcHZ2xtixY6vMbXj69CkmTJiAnj17wsXFBcOGDUNgYCBPnTdv3mDRokUYMGAAHB0dcfToUUlfAiFESok8SHj79i2cnJwQGxuLY8eOIS4uDjt37sTNmzfh7OyMrKwspq6bmxuSk5OZ1+XLl8XaeUIaumvXrmHDhg2YMGECjh49irZt22LWrFk8jz1+TUVFBaNGjcKePXtw8uRJTJo0Cf7+/jh9+jRTp6ioCEZGRpg1axbffiWEECIKkR+BdHd3R2RkJGJjY3mSIFNSUtCiRQt4enpix44d8PLyQk5ODs6ePVvtztE9CUTaeXp6onXr1li2bBlTNnz4cHTv3h2zZs0Sqo2FCxdCRUUFq1ev5vtswIABGDNmDMaMGSO2PhNSX9XGPQnl5eVia4vNZoutLUmRWFQ0ANy+fRu6urqwsLDA5MmTkZaWJr6eE9LAlZaWIiYmhm8ZrlOnTnj+/LlQbcTExOD58+do166dJLpICJFxEouKdnd3x8iRI2Fqaop3795h5cqV6NmzJ8LCwmj7ZUIA5OTkCIyK1tbW5rm/RxB3d3cmavqXX37B0KFDJdlVQoiMkkhUtJycHDw8PJhyW1tbODk5wdTUFJcuXcKwYcP4jhUUFV1aWkoDCiL1BEVFf8/evXtRUFCAFy9eYNu2bWjWrBnc3Nwk1UVCyP/Q0w1VEDYqWlDMrYGBAUxNTfH69WuBxwqKit6wYYMo3SOkQdHU1BQYFZ2VlfXdGw6NjIzQqlUrDBs2DGPGjMHu3bsl2VVCiIySSFS0oJFWZmYmPnz4AAMDA4FtC4qKXrBggSjdI6RBUVBQQOvWrfH48WOe8sePH4sUxsTlcsW6nzwhhFQQ+RHIbdu2obi4GH379sXdu3fx4cMHBAcHo0+fPkxU9KdPn7Bw4UI8fPgQ8fHxuH37NgYOHAgdHZ1K106VlJSgrq7O86KlBiLtxo0bh7Nnz+LcuXN49+4dNmzYgJSUFIwYMQIAsHXrVvz6669M/ePHj+Pu3btISEhAQkICzp8/j8OHD6Nfv35MndLSUrx69QqvXr1CaWkp0tLS8OrVK3z48KHWr48QafPt/j81eTUEEomKLiwsxIsXL3Do0CHk5OTAwMAAPXr0QFBQEJN5TwgBXF1dkZOTgz179iAjIwMtWrTAli1bmBm3jIwMpKSkMPU5HA62bduGxMREsNlsGBsbY9asWRg+fDhTJz09neeRx8OHD+Pw4cNwdHSkZQlCiEjqdVQ07ZNACCFEWJTdIH6UAkkIIYQQgWiQQAghhBCB6vVyAyGEX3FxMfz8/ODt7U039xJCJIoGCYQ0MHl5edDQ0EBubi7U1dXrujuEEClGyw2EEEIIEYgGCYQQQggRiAYJhBBCCBGIBgmENDBKSkpYtWoV3bRICJE4unGREEIIIQLRTAIhhBBCBKJBAiGEEEIEokECIYQQQgSiQQIhRKCDBw9CU1OTee/j4wMHB4c66w8hpPbRIIEQACkpKZg1axaaN28OJSUlNGvWDAMHDsTNmzfrumv1xsKFC3n+Pby8vDBkyJC66xAhROLk67oDhNS1+Ph4dO7cGZqamli/fj3s7OxQWlqKq1evYsaMGYiJianrLtYLjRo1oiheQmQMzSQQmTd9+nTIycnhv//+w4gRI2BhYQEbGxvMnz8fjx49AgAkJCRg8ODBaNSoEdTV1TFq1CikpqYybVRMxe/fvx8mJiZo1KgRpk2bhvLycqxfvx76+vrQ1dXFmjVreM4tJyeHXbt2YcCAAVBVVYWVlRUePnyIuLg4dO/eHWpqanB2dsabN2+YYwR9g587dy66d+/OvO/evTtmz56NxYsXo0mTJtDX14ePjw/PMRs3bkSbNm2gpqaGZs2aYfr06fj06VOl/05fLzf4+PggICAA586dg5ycHOTk5HD79m307NkTM2fO5DkuMzMTSkpKuHXr1vf+VxBC6hkaJBCZlpWVheDgYMyYMQNqamp8n2tqaoLL5WLIkCHIysrCnTt3cP36dbx58wYeHh48dd+8eYMrV64gODgYx44dw/79+9G/f398/PgRd+7cwbp167BixQpm4FFh9erV8PT0REREBFq3bo0xY8ZgypQp8Pb2RmhoKADw/eEVRkBAANTU1PD48WOsX78evr6+uH79OvM5i8XCli1bEBkZiYCAANy6dQuLFy8Wqu2FCxdi1KhRcHNzQ3JyMpKTk+Hi4oJJkybh6NGjKC4uZuoGBgbC0NAQPXr0EPkaCCF1jEuIDHv8+DEXAPf06dOV1rl27RqXzWZzExISmLKoqCguAO5///3H5XK53FWrVnFVVVW5eXl5TJ2+fftyzczMuOXl5UyZpaUl18/Pj3kPgLtixQrm/cOHD7kAuPv27WPKjh07xlVWVmbe//zzz9zBgwfz9HHOnDncbt26Me+7devG/eGHH3jqtG/fnrtkyZJKr/P48eNcbW1t5v2BAwe4GhoazPtVq1Zx7e3tq+xHUVERt0mTJtygoCCmzMHBgevj41PpeQkh9RfNJBCZxv3fhqNycnKV1nn58iWaNWuGZs2aMWXW1tbQ1NTEy5cvmTIzMzM0btyYea+npwdra2uwWCyesrS0NJ727ezseD4HgDZt2vCUFRUVIS8vT6Rr+7pdADAwMOA597///os+ffrAyMgIjRs3hqenJzIzM/H582eRzvM1JSUljBs3Dvv37wcARERE4NmzZ/Dy8qp2m4SQukODBCLTWrVqBTk5OZ4/9t/icrkCBxHflisoKPB8LicnJ7CMw+HwlH1dp6I9QWUVx7FYLGZwU6G0tJSvf1Wd+/379+jXrx9sbW1x6tQphIWFYfv27ZW2JYpJkybh+vXr+PjxI/bv349evXrB1NS0Rm0SQuoGDRKITGvSpAn69u2L7du3C/wGnZOTA2trayQkJODDhw9MeXR0NHJzc2FlZVWb3QUANG3aFMnJyTxlERERIrURGhqKsrIybNiwAZ06dYKFhQWSkpJEakNRURHl5eV85W3atIGTkxP27NmDo0ePYsKECSK1SwipP2iQQGSev78/ysvL0aFDB5w6dQqvX7/Gy5cvsWXLFjg7O6N3796ws7PD2LFjER4ejv/++w+enp7o1q0bnJycar2/PXv2RGhoKA4dOoTXr19j1apViIyMFKmNFi1aoKysDFu3bsXbt29x+PBh7Ny5U6Q2zMzM8Pz5c7x69QoZGRk8MxCTJk3C2rVrUV5ejqFDh4rULiGk/qBBApF55ubmCA8PR48ePbBgwQLY2tqiT58+uHnzJnbs2AE5OTmcPXsWWlpa6Nq1K3r37o3mzZsjKCioTvrbt29frFy5EosXL0b79u2Rn58PT09PkdpwcHDAxo0bsW7dOtja2iIwMBB+fn4itTF58mRYWlrCyckJTZs2xYMHD5jPfvzxR8jLy2PMmDFQVlYWqV1CSP1BUdGEELH78OEDzMzM8OTJE7Rr166uu0MIqSYaJBBCxKa0tBTJyclYunQp3r9/zzO7QAhpeGi5gRAiNg8ePICpqSnCwsJEvseBEFL/0EwCIYQQQgSimQRCCCGECESDBEIIIYQIRIMEQgghhAhEgwRCCCGECESDBEIIIYQIRIMEQgghhAhEgwRCCCGECESDBEIIIYQIRIMEQgghhAj0fxZLTB5hbCNwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Visualise communalities\n", "comms = pd.DataFrame(big5_efa.get_communalities(), index=bf3.columns, columns=['Communality'])\n", "\n", "# Show\n", "sns.heatmap(comms, cmap='Greys', annot=True)" ] }, { "cell_type": "markdown", "id": "36ca6f52-4ad0-49e7-b428-34a9bae81390", "metadata": {}, "source": [ "Thse don't look *too* bad. There are no hard and fast rules about what's good here, other than higher is better. Some of these like A4 and O4 may raise some eyebrows, but in general these would be acceptable. EFA is more an art than a science!\n" ] }, { "cell_type": "markdown", "id": "fc139ee9-fcfa-4f27-a898-ecd289c81b32", "metadata": {}, "source": [ "Its now possible to go one step further and examine the correlations amongst the factors themselves! That is, are the personality traits themselves correlated? This is only possible because we let `FactorAnalyzer` allow them to be correlated - there are many factor analysis approaches that produce completely uncorrelated factors, but as a rule, correlated factors make sense. These are stored in the `.phi_` attribute of the model." ] }, { "cell_type": "code", "execution_count": 16, "id": "e1114e29-e51e-4bfd-a1f9-c6bb574019dc", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
neuroextraconsciagreeopen
neuro1.000000-0.2563140.3988600.1423060.345106
extra-0.2563141.000000-0.2243640.040343-0.013000
consci0.398860-0.2243641.0000000.1919990.236255
agree0.1423060.0403430.1919991.0000000.155367
open0.345106-0.0130000.2362550.1553671.000000
\n", "
" ], "text/plain": [ " neuro extra consci agree open\n", "neuro 1.000000 -0.256314 0.398860 0.142306 0.345106\n", "extra -0.256314 1.000000 -0.224364 0.040343 -0.013000\n", "consci 0.398860 -0.224364 1.000000 0.191999 0.236255\n", "agree 0.142306 0.040343 0.191999 1.000000 0.155367\n", "open 0.345106 -0.013000 0.236255 0.155367 1.000000" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get correlations of all factors\n", "factor_corrs = big5_efa.phi_\n", "\n", "# Tidy it up into a DataFrame, with the suspected names of the factors\n", "factor_corrs = pd.DataFrame(factor_corrs, \n", " columns=['neuro', 'extra', 'consci', 'agree', 'open'],\n", " index=['neuro', 'extra', 'consci', 'agree', 'open'])\n", "\n", "factor_corrs" ] }, { "cell_type": "markdown", "id": "230393d6-6675-41e3-9122-616fb1892c99", "metadata": {}, "source": [ "Neurotic people are less extraverted but more conscientious, for example. Finally, we can give each person a score on the factors too, by extracting the latent variable score for each person. This would be useful to actually score someones Big 5 traits in terms of the latent variable." ] }, { "cell_type": "code", "execution_count": 17, "id": "308b26d5-ece5-41fc-8ab0-83d6b492b038", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
neuroextraconsciagreeopen
0-0.368754-0.298491-1.324973-0.917815-1.661550
10.0811860.352849-0.535773-0.176275-0.278700
20.4965390.106411-0.047870-0.6582640.194505
3-0.136226-0.169679-1.040085-0.115630-1.110601
4-0.3692980.230058-0.101516-0.810210-0.725543
50.0162931.2386861.4469430.2048310.469544
6-1.1882180.2042780.1826270.1371700.776679
70.547863-1.806800-1.227558-2.100190-0.616149
80.7420440.8471451.1933440.3919770.263996
9-0.1889350.247622-0.144489-0.078716-0.329985
\n", "
" ], "text/plain": [ " neuro extra consci agree open\n", "0 -0.368754 -0.298491 -1.324973 -0.917815 -1.661550\n", "1 0.081186 0.352849 -0.535773 -0.176275 -0.278700\n", "2 0.496539 0.106411 -0.047870 -0.658264 0.194505\n", "3 -0.136226 -0.169679 -1.040085 -0.115630 -1.110601\n", "4 -0.369298 0.230058 -0.101516 -0.810210 -0.725543\n", "5 0.016293 1.238686 1.446943 0.204831 0.469544\n", "6 -1.188218 0.204278 0.182627 0.137170 0.776679\n", "7 0.547863 -1.806800 -1.227558 -2.100190 -0.616149\n", "8 0.742044 0.847145 1.193344 0.391977 0.263996\n", "9 -0.188935 0.247622 -0.144489 -0.078716 -0.329985" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Extract the scores\n", "traits = big5_efa.transform(bf3)\n", "\n", "# Into a dataframe\n", "traits = pd.DataFrame(traits,\n", " columns=['neuro', 'extra', 'consci', 'agree', 'open'])\n", "\n", "# show traits\n", "traits.head(10)" ] }, { "cell_type": "markdown", "id": "983afd9b-c8f3-4f08-bf93-4bcacf4685cc", "metadata": {}, "source": [ "As an example, participant 5 has some particularly high scores on extrversion and conscientiousness, while participant 0 has rather low openness." ] }, { "cell_type": "markdown", "id": "91521a88-c5e5-4828-98de-136b7bcd5314", "metadata": {}, "source": [ "### But **how** many factors are there?!\n", "We come now to the crux of EFA, and a point that causes dramatic discussion in the academic literature. For example you may have heard of the HEXACO model of personality (six factors) as opposed to the Big 5 - the same kinds of data can produce different numbers of factors. How do we choose the number of factors to extract? In the above examples we had a good theoretical grounding that guided us, but often times we are using EFA in an *exploratory* sense, that is, to explore the possible latent variables in the data.\n", "\n", "There are many, many techniques for determining the number of factors in a dataset, and all of them come with caveats and controversy. This is - and has been for decades - an active area of research in statistics. We will look at one technique here which does reasonably well at identifying the \"right\" number of factors, and has a sensible philosophical background, called *parallel analysis*.\n", "\n", "How it works is technical, but the basic idea goes like this:\n", "\n", "1. Looking at the data you have collected, create a set of randomly-generated data that is the same number of rows and columns that is basically entirely uncorrelated.\n", "2. Conduct a factor analysis on this created data, with the number of factors set to the number of variables (e.g. if 10 variables, get 10 factors), and calculate the 'eigenvalues' - these represent how much variance each factor explains.\n", "3. Repeat step 2 thousands of times and collect all the variances explained for each factor.\n", "4. Now in your real data, conducted the factor analysis with the number of factors equal to the number of variables. Get the variances explained.\n", "5. Find where the variances in your actual data are *above and beyond* those seen from step 3. Count along until the variances of the real data *are within the bounds* of those at step 3. The number of factors up to that point is a good guess of how many factors there are, simply because beyond that the values are consistent with *entirely made up nonsense data!*\n", "\n", "That sounds complicated, but its really using the idea of what you'd expect to see by chance as a way to understand what you see your data. Fortunately, conducting it in Python is very simple.\n", "\n", "We use the `parallel_analysis` function from the `horns` package. We specify the analysis type as 'fa' (this approach also works for other types of analyses in this domain, like principal components analysis, so we are explicit to tell it we want an EFA), ask for the full output, and we have to convert our DataFrame to a `numpy` array. We also limit it to 500 repeats, as more take longer!\n", "\n", "Its as simple as the below:" ] }, { "cell_type": "code", "execution_count": 18, "id": "88022110-e0f0-4a94-9c06-e4bd456e54b3", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNdklEQVR4nO3deVhUZf8G8PvMAMMmiAuyDOK+i1mmr/rDJcutNCPM7S3rNctyzXory1LfFkpzQVNzKbUSNQ0stdJUQMwl1zTBHRQRJc1AkEVmnt8fNhMjIMNwZs7McH+u61wy55w5853j6Nw8z3OeIwkhBIiIiIjskErpAoiIiIjKw6BCREREdotBhYiIiOwWgwoRERHZLQYVIiIislsMKkRERGS3GFSIiIjIbrkoXUBV6PV6XL58GTVq1IAkSUqXQ0RERGYQQuDmzZsICgqCSnXvNhOHDiqXL19GSEiI0mUQERGRBdLT06HVau+5j0MHlRo1agC480Z9fHwUroaIiIjMkZOTg5CQEOP3+L04dFAxdPf4+PgwqBARETkYc4ZtcDAtERER2S0GFSIiIrJbDCpERERktxx6jAoRETkPvV6PoqIipcsgGbi6ukKtVstyLAYVIiJSXFFREVJTU6HX65UuhWRSs2ZNBAQEVHmeMwYVIiJSlBACmZmZUKvVCAkJqXACMLJvQgjcunULWVlZAIDAwMAqHY9BhYiIFFVcXIxbt24hKCgInp6eSpdDMvDw8AAAZGVlwd/fv0rdQIytRESkKJ1OBwBwc3NTuBKSkyF03r59u0rHYVAhIiK7wHu2ORe5/j7Z9VMGnU6HpKQkZGZmIjAwEOHh4bKNXiYiIiLzMajcJTY2FhMnTsSlS5eM67RaLaKjoxEREaFgZURERNUPu35KiI2NRWRkpElIAYCMjAxERkYiNjZWocqIiKgiOp0OCQkJWLNmDRISEoxjX+xBgwYNMG/ePKXLkI0t3w+Dyt90Oh0mTpwIIUSpbYZ1kyZNsqsPPhER3REbG4sGDRqgZ8+eGD58OHr27IkGDRrY5BfM9PR0jBo1CkFBQXBzc0NoaCgmTpyI69evW/21qwMGlb8lJSWVakkpSQiB9PR0JCUl2bAqIiKqiJKt4efPn0eHDh1w+vRprFmzBmfPnsVnn32GHTt2oHPnzvjzzz+t9tr3otPpnGbyPAaVv2VmZsq6HxERWUYIgby8PLOWnJwcTJgw4Z6t4RMnTkROTo5ZxyvrOPcyduxYuLm5Ydu2bejevTvq16+Pfv36Yfv27cjIyMDbb79t3PfmzZsYPnw4vL29ERQUhAULFpgca/r06ahfvz40Gg2CgoIwYcIE47aioiK8/vrrCA4OhpeXFzp16oSEhATj9pUrV6JmzZrYvHkzWrVqBY1Gg2XLlsHd3R1//fWXyetMmDAB3bt3Nz7es2cPunXrBg8PD4SEhGDChAnIy8szbs/KysKAAQPg4eGBhg0bYvXq1ZU6R1UmHFh2drYAILKzs6t8rPj4eAGgwiU+Pr7qhRMRkVF+fr5ITk4W+fn5QgghcnNzzfr/2BpLbm6u2XVfv35dSJIkPvzwwzK3jx49Wvj5+Qm9Xi9CQ0NFjRo1RFRUlDh16pSYP3++UKvVYtu2bUIIIdavXy98fHzEDz/8IC5cuCD2798vli5dajzW8OHDRZcuXcSuXbvE2bNnxaxZs4RGoxGnT58WQgixYsUK4erqKrp06SJ++eUXcfLkSZGbmyvq1asnli9fbjxOcXGxqFevnliyZIkQQohjx44Jb29vMXfuXHH69Gnxyy+/iPbt24tnn33W+Jx+/fqJNm3aiD179oiDBw+KLl26CA8PDzF37txK/b2WVJnvbwaVvxUXFwutViskSSrzwytJkggJCRHFxcUyVE5ERAaOGlT27dsnAIi4uLgyt8+ZM0cAEFevXhWhoaGib9++JtuHDBki+vXrJ4QQYvbs2aJZs2aiqKio1HHOnj0rJEkSGRkZJut79eolpkyZIoS4E1QAiKNHj5rsM2HCBPHQQw8ZH2/dulW4ubmJP//8UwghxNNPPy1eeOEFk+ckJSUJlUol8vPzxalTpwQAsW/fPuP2lJQUAcBmQYVdP39Tq9WIjo4GUHqSGsPjefPmcT4VIiIr8/T0RG5urlnLDz/8YNYxf/jhB7OOJ+cU/uLvbiTDd0jnzp1Ntnfu3BkpKSkAgMGDByM/Px+NGjXC6NGjERcXh+LiYgDA4cOHIYRAs2bN4O3tbVwSExNx7tw54/Hc3NwQFhZm8hojRoxAQkICLl++DABYvXo1+vfvDz8/PwDAoUOHsHLlSpPj9unTB3q9HqmpqUhJSYGLiws6dOhgPGaLFi1Qs2ZN2c5TRTiPSgkRERHYsGFDmfOozJs3j/OoEBHZgCRJ8PLyMmvf3r17Q6vVIiMjo8zxJZIkQavVonfv3rL/otmkSRNIkoTk5GQMGjSo1PaTJ0/Cz88PderUKfcYhhATEhKCU6dO4eeff8b27dvx8ssvY9asWUhMTIRer4darcahQ4dKvQdvb2/jzx4eHqV+0e7YsSMaN26MtWvX4qWXXkJcXBxWrFhh3K7X6/Hiiy+ajIcxqF+/Pk6dOmVSpxLYonKXiIgIpKWl4f777wcAvPnmm0hNTWVIISKyQ0q2hteuXRuPPPIIFi1ahPz8fJNtV65cwerVqzFkyBBjHfv27TPZZ9++fWjRooXxsYeHBwYOHIj58+cjISEBe/fuxfHjx9G+fXvodDpkZWWhSZMmJktAQECFdQ4fPhyrV6/Gpk2boFKp8Oijjxq33X///Thx4kSp4zZp0gRubm5o2bIliouLcfDgQeNzTp06VWqArjUxqJRBrVajXbt2AO6kVXb3EBHZL0NreHBwsMl6rVaLDRs2WPUXzU8//RSFhYXo06cPdu3ahfT0dPz000945JFHEBwcjA8++MC47y+//IKZM2fi9OnTWLhwIdavX4+JEycCuHPVzueff47ff/8d58+fx1dffQUPDw+EhoaiWbNmGDFiBJ555hnExsYiNTUVBw4cwMcff2xW19eIESNw+PBhfPDBB4iMjIS7u7tx2xtvvIG9e/di7NixOHr0KM6cOYPvv/8e48ePBwA0b94cffv2xejRo7F//34cOnQIzz//vPHuyLbAoFIOrVYL4M5EPkREZN8MreHx8fGIiYlBfHy8TVrDmzZtioMHD6Jx48YYMmQIGjdujBdeeAE9e/bE3r17UatWLeO+r776Kg4dOoT27dvjvffew+zZs9GnTx8AQM2aNbFs2TJ07doVYWFh2LFjBzZt2oTatWsDAFasWIFnnnkGr776Kpo3b46BAwdi//79CAkJMavGBx98EMeOHcOIESNMtoWFhSExMRFnzpxBeHg42rdvj3feeQeBgYHGfVasWIGQkBB0794dEREReOGFF+Dv7y/H6TOLJMrq1LOR6dOnY8aMGSbr6tWrhytXrpj1/JycHPj6+iI7Oxs+Pj6y1rZs2TK88MILePTRR7F582ZZj01ERP8oKChAamoqGjZsaPLbPjm2e/29Vub7W/HBtK1bt8b27duNj+2lm4UtKkRERMpTPKi4uLiYNRjI1gzNafeaVp+IiIisS/ExKmfOnEFQUBAaNmyIoUOH4vz58+XuW1hYiJycHJPFWgxB5c8//8StW7es9jpERERUPkWDSqdOnfDll19i69atWLZsGa5cuYIuXbqUe8fJqKgo+Pr6GhdzBhFZysfHx3h9Ort/iIiIlKFoUOnXrx+efPJJtG3bFg8//DC2bNkCAFi1alWZ+0+ZMgXZ2dnGxZoBQpIkdv8QEREpTPExKiV5eXmhbdu2OHPmTJnbNRoNNBqNzerRarVISUlhiwoREZFCFB+jUlJhYSFSUlJMrt9WEltUiIiIlKVoUHnttdeQmJiI1NRU7N+/H5GRkcjJycHIkSOVLMvIEFTYokJERKQMRYPKpUuXMGzYMDRv3hwRERFwc3PDvn37EBoaqmRZRpxLhYiILJWWlgZJknD06FGbvm5CQgIkSary/XgkScLGjRvL3W6r96foGJW1a9cq+fIVYtcPERGVpaK7CY8cORLTp0+3TTFOzq4G09obtqgQEVFZMjMzjT+vW7cO7777Lk6dOmVc5+HhgRs3blT6uDqdDpIkQaWyqyGkiuKZuAdDi8pff/2F3NxchashIiJ7ERAQYFx8fX0hSVKpdQbnz59Hz5494enpiXbt2mHv3r3GbStXrkTNmjWxefNmtGrVChqNBhcuXEBRURFef/11BAcHw8vLC506dUJCQoLxeRcuXMCAAQPg5+cHLy8vtG7dutSdlA8dOoQOHTrA09MTXbp0MQlSALB48WI0btwYbm5uaN68Ob766qt7vudff/0V7du3h7u7Ozp06IAjR45U4Qyajy0q9+Dj4wMfHx/k5OTg0qVLaNGihdIlERE5PyEApWYE9/QEKujWqay3334bn3zyCZo2bYq3334bw4YNw9mzZ+Hicucr+NatW4iKisLy5ctRu3Zt+Pv747nnnkNaWhrWrl2LoKAgxMXFoW/fvjh+/DiaNm2KsWPHoqioCLt27YKXlxeSk5ONk5SWfN3Zs2ejbt26GDNmDP7zn//gl19+AQDExcVh4sSJmDdvHh5++GFs3rwZzz33HLRaLXr27FnqPeTl5eGxxx7DQw89hK+//hqpqamYOHGirOepXMKBZWdnCwAiOzvbaq/RqlUrAUBs27bNaq9BRFSd5efni+TkZJGfn39nRW6uEHfiiu2X3NxK179ixQrh6+tban1qaqoAIJYvX25cd+LECQFApKSkGJ8LQBw9etS4z9mzZ4UkSSIjI8PkeL169RJTpkwRQgjRtm1bMX369DLriY+PFwDE9u3bjeu2bNkiABjPcZcuXcTo0aNNnjd48GDRv39/42MAIi4uTgghxJIlS0StWrVEXl6ecfvixYsFAHHkyJEy6yj191pCZb6/2fVTAQ6oJSKiqggLCzP+bJgnLCsry7jOzc3NZJ/Dhw9DCIFmzZrB29vbuCQmJuLcuXMAgAkTJuD9999H165dMW3aNBw7dqxSr5uSkoKuXbua7N+1a1ekpKSU+R5SUlLQrl07eHp6Gtd17tzZvBNQRez6qQAH1BIR2ZinJ6DUuMASX8RycXV1Nf5suFpIr9cb13l4eJhcRaTX66FWq3Ho0CGo1WqTYxm6d55//nn06dMHW7ZswbZt2xAVFYXZs2dj/PjxZr/u3VcuCSHKvZrpTgOLMhhUKsBJ34iIbEySAC8vpatQTPv27aHT6ZCVlYXw8PBy9wsJCcGYMWMwZswYTJkyBcuWLTMJKvfSsmVL7N69G88884xx3Z49e9CyZcsy92/VqhW++uor5Ofnw8PDAwCwb9++Srwry7HrpwLs+iEiIltq1qwZRowYgWeeeQaxsbFITU3FgQMH8PHHHxuv7Jk0aRK2bt2K1NRUHD58GDt37iw3ZJTlv//9L1auXInPPvsMZ86cwZw5cxAbG4vXXnutzP2HDx8OlUqFUaNGITk5GT/88AM++eQTWd5vRRhUKsCuHyIisrUVK1bgmWeewauvvormzZtj4MCB2L9/v/GXZ51Oh7Fjx6Jly5bo27cvmjdvjkWLFpl9/EGDBiE6OhqzZs1C69atsWTJEqxYsQI9evQoc39vb29s2rQJycnJaN++Pd5++218/PHHcrzVCklCyY6nKsrJyYGvry+ys7Ph4+NjlddISUlBq1at4OvrW+XpiImIqLSCggKkpqaiYcOGcHd3V7ocksm9/l4r8/3NFpUKGFpUsrOzcfPmTYWrISIiql4YVCpQo0YN4wyD7P4hIiKyLQYVM3BALRERkTIYVMzAAbVERETKYFAxA1tUiIisz4Gv7aAyyPX3yaBiBk76RkRkPYbZV4uKihSuhOR06+8bS5acIdcSnJnWDOz6ISKyHhcXF3h6euKPP/6Aq6srVCr+Du3IhBC4desWsrKyULNmzVK3AagsBhUzsOuHiMh6JElCYGAgUlNTceHCBaXLIZnUrFkTAQEBVT4Og4oZ2KJCRGRdbm5uaNq0Kbt/nISrq2uVW1IMGFTMYGhRuXnzJnJycqw2Cy4RUXWmUqk4My2Vwo5AM3h5ecHPzw8AW1WIiIhsiUHFTOz+ISIisj0GFTNxQC0REZHtMaiYiS0qREREtsegYia2qBAREdkeg4qZODstERGR7TGomIldP0RERLbHoGKmki0qvHEWERGRbTComMnQopKXl4fs7GyFqyEiIqoeGFTM5OnpiVq1agHggFoiIiJbYVCpBA6oJSIisi0GlUrggFoiIiLbYlCpBM6lQkREZFsMKpXAFhUiIiLbYlCpBI5RISIisi0GlUpg1w8REZFtMahUQsmuH076RkREZH0MKpVgCCq3bt3CX3/9pWwxRERE1QCDSiV4eHigdu3aADhOhYiIyBYYVCqJA2qJiIhsh0GlkjigloiIyHYYVCqJc6kQERHZDoNKJbFFhYiIyHYYVCqJLSpERES2w6BSSRxMS0REZDsMKpVUsuuHk74RERFZF4NKJQUHBwMA8vPz8eeffypcDRERkXNjUKkkd3d31K1bFwAH1BIREVkbg4oFOKCWiIjINhhULMABtURERLbBoGIBzqVCRERkG3YTVKKioiBJEiZNmqR0KRVi1w8REZFt2EVQOXDgAJYuXYqwsDClSzELW1SIiIhsQ/GgkpubixEjRmDZsmXw8/NTuhyzsEWFiIjINhQPKmPHjsWjjz6Khx9+uMJ9CwsLkZOTY7IogZO+ERER2YaiQWXt2rU4fPgwoqKizNo/KioKvr6+xsUQGGzNMOlbQUEBrl+/rkgNRERE1YFiQSU9PR0TJ07E119/DXd3d7OeM2XKFGRnZxsXpbpeNBoN/P39AbD7h4iIyJoUCyqHDh1CVlYWHnjgAbi4uMDFxQWJiYmYP38+XFxcoNPpSj1Ho9HAx8fHZFEK51IhIiKyPhelXrhXr144fvy4ybrnnnsOLVq0wBtvvAG1Wq1QZebRarU4dOgQr/whIiKyIsWCSo0aNdCmTRuTdV5eXqhdu3ap9faILSpERETWp/hVP46Kc6kQERFZn2ItKmVJSEhQugSzcS4VIiIi62OLioXY9UNERGR9DCoWMrSocNI3IiIi62FQsVBwcDAkSUJRURH++OMPpcshIiJySgwqFnJzc0O9evUAcEAtERGRtTCoVAEH1BIREVkXg0oVcEAtERGRdTGoVEHJAbVEREQkPwaVKmCLChERkXUxqFQBZ6clIiKyLgaVKuBgWiIiIutiUKmCki0qer1e4WqIiIicD4NKFQQFBUGSJNy+fZuTvhEREVkBg0oVuLq6IiAgAAC7f4iIiKyBQaWKOKCWiIjIehhUqogDaomIiKyHQaWKOJcKERGR9TCoVBG7foiIiKyHQaWK2PVDRERkPQwqVcSuHyIiIuthUKkiQ4tKRkYGJ30jIiKSGYNKFQUFBUGlUqG4uBhXr15VuhwiIiKnwqBSRS4uLggMDATAAbVERERyY1CRAQfUEhERWQeDigw4oJaIiMg6GFRkYGhRYdcPERGRvBhUZMAWFSIiIutgUJEBZ6clIiKyDgYVGXAwLRERkXUwqMjA0KKSkZEBnU6ncDVERETOg0FFBgEBAVCpVNDpdJz0jYiISEYMKjJwcXFBUFAQAHb/EBERyYlBRSYcUEtERCQ/BhWZcEAtERGR/BhUZMK5VIiIiOTHoCITzk5LREQkPwYVmbBFhYiISH4MKjLhYFoiIiL5MajIxND1c/nyZU76RkREJBMGFZkEBARArVZDp9MhMzNT6XKIiIicAoOKTNRqtXHSN3b/EBERyYNBRUYcUEtERCQvBhUZcUAtERGRvBhUZMTZaYmIiOTFoCIjdv0QERHJi0FFRpydloiISF4MKjJiiwoREZG8GFRkZAgqmZmZKC4uVrgaIiIix8egIiN/f3+4uLhAr9dz0jciIiIZMKjISK1WIzg4GAC7f4iIiOTAoCIzDqglIiKSD4OKzDigloiISD6KBpXFixcjLCwMPj4+8PHxQefOnfHjjz8qWVKVMagQERHJp8pBpaCgwOLnarVafPTRRzh48CAOHjyIhx56CI8//jhOnDhR1bIUw64fIiIi+VgUVPR6Pd577z0EBwfD29sb58+fBwC88847+Pzzz80+zoABA9C/f380a9YMzZo1wwcffABvb2/s27fPkrLsAltUiIiI5GNRUHn//fexcuVKzJw5E25ubsb1bdu2xfLlyy0qRKfTYe3atcjLy0Pnzp3L3KewsBA5OTkmi71hiwoREZF8LAoqX375JZYuXYoRI0ZArVYb14eFheHkyZOVOtbx48fh7e0NjUaDMWPGIC4uDq1atSpz36ioKPj6+hoXQ+uFPSk56dvt27cVroaIiMixWRRUMjIy0KRJk1Lr9Xp9pb+cmzdvjqNHj2Lfvn146aWXMHLkSCQnJ5e575QpU5CdnW1c7LF7xd/fH66urhBC4PLly0qXQ0RE5NAsCiqtW7dGUlJSqfXr169H+/btK3UsNzc3NGnSBB06dEBUVBTatWuH6OjoMvfVaDTGK4QMi71RqVTGSd/Y/UNERFQ1LpY8adq0aXj66aeRkZEBvV6P2NhYnDp1Cl9++SU2b95cpYKEECgsLKzSMZQWEhKCtLQ0u2zxISIiciQWBZUBAwZg3bp1+PDDDyFJEt59913cf//92LRpEx555BGzj/PWW2+hX79+CAkJwc2bN7F27VokJCTgp59+sqQsu8EBtURERPKwKKgAQJ8+fdCnT58qvfjVq1fx9NNPIzMzE76+vggLC8NPP/1UqbBjj3iJMhERkTwsDipyqMycK46EQYWIiEgeFgUVlUoFSZLK3a7T6SwuyBmw64eIiEgeFgWVuLg4k8e3b9/GkSNHsGrVKsyYMUOWwhwZW1SIiIjkIQkhhFwHi4mJwbp16/Ddd9/Jdch7ysnJga+vL7Kzs+3qUuWrV68iICAAkiShoKDAZPZeIiKi6q4y39+y3j25U6dO2L59u5yHdEh169aFm5sbJ30jIiKqItmCSn5+PhYsWGAcn1GdqVQq43lg9w8REZHlLBqj4ufnZzKYVgiBmzdvwtPTE19//bVsxTkyrVaL8+fPc0AtERFRFVgUVObOnWsSVFQqFerWrYtOnTrBz89PtuIcGQfUEhERVZ1FQeXZZ5+VuQznw64fIiKiqjM7qBw7dszsg4aFhVlUjDMxtKiw64eIiMhyZgeV++67D5IkoaKrmSVJqvYTvgHs+iEiIpKD2UElNTXVmnU4Hc5OS0REVHVmB5XQ0FBr1uF0DC0qV69eRWFhITQajcIVEREROZ4q3ZQwOTkZFy9eRFFRkcn6gQMHVqkoZ1CnTh1oNBoUFhYiIyMDjRo1UrokIiIih2NRUDl//jyeeOIJHD9+3GTciuGSZY5RuXMutFotzp07h0uXLjGoEBERWcCimWknTpyIhg0b4urVq/D09MSJEyewa9cudOjQAQkJCTKX6Lg4oJaIiKhqLGpR2bt3L3bu3Im6detCpVJBpVLh//7v/xAVFYUJEybgyJEjctfpkDigloiIqGosalHR6XTw9vYGcGcshuHGe6GhoTh16pR81Tk4tqgQERFVjUUtKm3atMGxY8fQqFEjdOrUCTNnzoSbmxuWLl3KsRglMKgQERFVjUVBZerUqcjLywMAvP/++3jssccQHh6O2rVrY926dbIW6MjY9UNERFQ1FgWVPn36GH9u1KgRkpOT8eeff5a6q3J1xxYVIiKiqrFojMqqVauMLSoGtWrVYki5S2BgIADgjz/+wLZt23jZNhERUSVZFFRee+01+Pv7Y+jQodi8eTOKi4vlrsvhxcbGokOHDsbHffr0QYMGDRAbG6tgVURERI7FoqCSmZmJdevWQa1WY+jQoQgMDMTLL7+MPXv2yF2fQ4qNjUVkZGSpsSkZGRmIjIxkWCEiIjKTJCq6HXIFbt26hbi4OMTExGD79u3G2VhtIScnB76+vsjOzoaPj49NXrMiOp0ODRo0KHcArWHG2tTUVKjVahtXR0REpLzKfH9b1KJSkqenJ/r06YN+/fqhadOmSEtLq+ohHVpSUtI9r/IRQiA9PR1JSUk2rIqIiMgxWRxUbt26hdWrV6N///4ICgrC3LlzMWjQIPz+++9y1udwMjMzZd2PiIioOrPo8uRhw4Zh06ZN8PT0xODBg5GQkIAuXbrIXZtDMlzpI9d+RERE1ZlFQUWSJKxbtw59+vSBi4tFh3Ba4eHh0Gq1yMjIQFnDfwxjVMLDwxWojoiIyLFY1PUTExODRx99lCGlDGq1GtHR0QBQ7rwy8+bN40BaIiIiM1icNHbs2IEdO3YgKysLer3eZNsXX3xR5cIcWUREBDZs2ICJEyeWGlg7efJkREREKFQZERGRY7GoRWXGjBno3bs3duzYgWvXruHGjRsmC90JK2lpaYiPj0dMTAxGjBgBADh+/LjClRERETkOi+ZRCQwMxMyZM/H0009boyaz2eM8KuU5d+4cmjRpAkmSkJqaitDQUKVLIiIiUoTV51EpKiriVT6V1LhxYzz00EMQQmDFihVKl0NEROQQLAoqzz//PGJiYuSuxek9//zzAO6M4eENComIiCpm0WDagoICLF26FNu3b0dYWBhcXV1Nts+ZM0eW4pzNE088AT8/P6Snp+Pnn39G3759lS6JiIjIrlkUVI4dO4b77rsPAErNRFveJbkEuLu749///jcWLFiAzz//nEGFiIioAlW+KaGSHGkwrcGxY8fQrl07uLq64tKlS/D391e6JCIiIpuy2U0Jz549i61btyI/Px8AypyJlUyFhYWhQ4cOuH37Nr766iulyyEiIrJrFgWV69evo1evXmjWrBn69+9vvMHe888/j1dffVXWAp2RYVDt559/znBHRER0DxYFlVdeeQWurq64ePEiPD09jeuHDBmCn376SbbinNWwYcPg6emJlJQU7N27V+lyiIiI7JZFQWXbtm34+OOPodVqTdY3bdoUFy5ckKUwZ+bj44OnnnoKALB8+XKFqyEiIrJfFgWVvLw8k5YUg2vXrkGj0VS5qOpg1KhRAIB169YhJydH4WqIiIjsk0VBpVu3bvjyyy+NjyVJgl6vx6xZs9CzZ0/ZinNmXbt2RfPmzXHr1i2sW7dO6XKIiIjskkVBZdasWViyZAn69euHoqIivP7662jTpg127dqFjz/+WO4anZIkScZBtez+ISIiKptFQaVVq1Y4duwYOnbsiEceeQR5eXmIiIjAkSNH0LhxY7lrdFrPPPMMXFxc8Ouvv/KuykRERGXghG8Ke/LJJxEbG4uJEydi3rx5SpdDRERkdZX5/rYoqBw7dqzsg0kS3N3dUb9+fZsMqnWGoPLjjz+if//+qFWrFjIyMuDu7q50SURERFZVme9vi+71c9999xnv6WPIOSXv8ePq6oohQ4ZgyZIl/OKtQO/evaHVanHp0iVs3LgRQ4cOVbokIiIiu2HRGJW4uDg0bdoUS5cuxW+//YajR49i6dKlaN68OWJiYvD5559j586dmDp1qtz1Oh21Wo3nnnsOwJ2ZaomIiOgfFnX9dOzYEe+99x769Oljsn7r1q1455138Ouvv2Ljxo149dVXce7cOdmKvZszdP0AQFpaGho1agQhBM6fP4+GDRsqXRIREZHVWP2mhMePH0doaGip9aGhocarV+677z7jPYDo3ho0aICHH34YAPDFF18oXA0REZH9sCiotGjRAh999BGKioqM627fvo2PPvoILVq0AABkZGSgXr169zxOVFQUHnzwQdSoUQP+/v4YNGgQTp06ZUlJDs8wU+2KFSug0+kUroaIiMg+WDSYduHChRg4cCC0Wi3CwsIgSRKOHTsGnU6HzZs3AwDOnz+Pl19++Z7HSUxMxNixY/Hggw+iuLgYb7/9Nnr37o3k5GR4eXlZUprDGjRokPHKn61bt6J///5Kl0RERKQ4i+dRyc3Nxddff43Tp09DCIEWLVpg+PDhqFGjhsXF/PHHH/D390diYiK6detW4f7OMkbF4JVXXsG8efPwxBNPIDY2VulyiIiIrMLq86hYy9mzZ9G0aVMcP34cbdq0KbW9sLAQhYWFxsc5OTkICQlxmqDy+++/o23btnBxccGlS5cq7DojIiJyRFaZR+X7779Hv3794Orqiu+///6e+w4cONDcwxoJITB58mT83//9X5khBbgzpmXGjBmVPrajaNOmDTp16oT9+/fjyy+/xH//+1+lSyIiIlKU2S0qKpUKV65cgb+/P1Sq8sfgSpJk0WDQsWPHYsuWLdi9eze0Wm2Z+zh7iwpw5waFo0ePRrNmzXDy5EmTifSIiIicgcN1/YwfPx4bN27Erl27KjWHiLONUQGAmzdvIjAwEHl5edi1axfCw8OVLomIiEhWVptHpX///sjOzjY+/uCDD/DXX38ZH1+/fh2tWrUy+3hCCIwbNw6xsbHYuXMnJzoDUKNGDQwZMgQAZ6olIiKqVIuKWq1GZmYm/P39AQA+Pj44evQoGjVqBAC4evUqgoKCzO76efnllxETE4PvvvsOzZs3N6739fWFh4dHhc93xhYVANi7dy+6dOkCDw8PZGZmwtfXV+mSiIiIZGO1FpW7M01Ve40WL16M7Oxs9OjRA4GBgcZl3bp1VTquo/vXv/6FVq1aIT8/H2vWrFG6HCIiIsVYNDOtXIQQZS7PPvuskmUpTpIk40y17P4hIqLqrFJBRZKkUleh8KoU63j66afh6uqKgwcP4ujRo0qXQ0REpIhKTaFvaO3QaDQAgIKCAowZM8Y43X3JS4epaurWrYtBgwZh/fr1+Pzzz7FgwQKlSyIiIrK5Sg2mfe6558zab8WKFRYXVBnOOpjWYNu2bejTpw9q1qyJy5cvmzXAmIiIyN453DwqlnL2oKLX69GwYUNcvHgRq1evxvDhw5UuiYiIqMqsdtUP2ZZKpcJ//vMfAHdmrCUiIqpuGFTs3HPPPQdJkhAfH49z584pXQ4REZFNMajYufr166N3794AgGnTpmHNmjVISEiw6H5KREREjoZBxQG0bdsWAIzjVHr27IkGDRogNjZW4cqIiIisi0HFzsXGxmL27Nml1mdkZCAyMpJhhYiInBqDih3T6XSYOHFimbcqMKybNGkSu4GIiMhpMajYsaSkJFy6dKnc7UIIpKenIykpyYZVERER2Q6Dih3LzMyUdT8iIiJHw6BixwIDA2Xdj4iIyNEwqNix8PBwaLXae974MSQkBOHh4TasioiIyHYYVOyYWq1GdHQ0gPLvUj148GCo1WpblkVERGQzDCp2LiIiAhs2bEBwcLDJem9vbwDAokWLcODAASVKIyIisjoGFQcQERGBtLQ0xMfHIyYmBvHx8bh+/ToeffRRFBQUYODAgUhPT1e6TCIiItnx7skOLCcnB127dsXvv/+Odu3aYffu3caWFiIiInvFuydXEz4+Pti0aRP8/f3x22+/YcSIEZz8jYiInAqDioNr0KABNm7cCI1Gg++//x5TpkxRuiQiIiLZMKg4gc6dO+OLL74AAMyaNcv4MxERkaNjUHESw4cPx7vvvgsAePHFF5GYmKhwRURERFXHoOJEpk2bhqeeegrFxcWIiIjA2bNnlS6JiIioShhUnIhKpcLKlSvRsWNH/Pnnn3jsscdw48YNpcsiIiKyGIOKk/Hw8MB3332HkJAQnDp1CoMHD8bt27eVLouIiMgiDCpOKCAgAJs2bYKXlxd27NiB8ePHw4GnyyEiomqMQcVJtWvXDjExMZAkCUuWLMH8+fOVLomIiKjSGFSc2MCBAzFz5kwAwOTJk/HDDz8oXBEREVHlMKg4uVdffRWjRo2CXq/H0KFDcfz4caVLIiIiMpuL0gWQdUmShEWLFuHcuXNISEjAgAEDsHfvXpw6dQqZmZkIDAxEeHg41Gq10qUSERGVwqBSDbi5ueHbb79Fp06dcPbsWTRo0ABFRUXG7VqtFtHR0YiIiFCwSiIiotLY9VNN1KpVCxMmTAAAk5ACABkZGYiMjERsbKwSpREREZWLQaWa0Ol0xoG1dzNcujxp0iTefZmIiOwKg0o1kZSUhEuXLpW7XQiB9PR0JCUl2bAqIiKie2NQqSYyMzNl3Y+IiMgWGFSqicDAQFn3IyIisgUGlWoiPDwcWq0WkiSVu4+bmxtat25tw6qIiIjujUGlmlCr1YiOjgaAcsNKUVERunfvjosXL9qyNCIionIxqFQjERER2LBhA4KDg03Wh4SEYO7cuQgODkZKSgq6dOmC33//XaEqiYiI/iEJB76tbk5ODnx9fZGdnQ0fHx+ly3EYOp0OSUlJpWamTU9PR9++fZGcnAxfX198//336Natm9LlEhGRk6nM9zeDCpn4888/8fjjj2P37t3QaDRYvXo1nnzySaXLIiIiJ1KZ7292/ZCJWrVqYdu2bRg0aBAKCwsxePBgLFq0SOmyiIiommJQoVI8PDywYcMGvPjiixBCYOzYsZg6dSocuPGNiIgcFIMKlUmtVmPx4sX43//+BwD44IMP8Pzzz6O4uFjhyoiIqDphUKFySZKEd955B8uWLYNKpcIXX3yBQYMGIS8vT+nSiIiommBQoQo9//zziIuLg7u7O7Zs2YJevXrh2rVrAO5cQZSQkIA1a9YgISGBNzUkIiJZMaiQWQYOHIgdO3agVq1a2L9/P7p27YrPPvsMDRo0QM+ePTF8+HD07NkTDRo0QGxsrNLlEhGRk+DlyVQpKSkp6Nu3b7mz1xpmvd2wYQMiIiJsWRoRETkIXp5MVtOyZUskJSXB1dW1zO2G3Dtp0iR2AxERUZUxqFClnT9/Hrdv3y53uxAC6enpSEpKsmFVRETkjBhUqNIyMzNl3Y+IiKg8igaVXbt2YcCAAQgKCoIkSdi4caOS5ZCZAgMDZd2PiIioPIoGlby8PLRr1w6ffvqpkmVQJYWHh0Or1RoHzt5NkiSEhIQgPDzcxpUREZGzcVHyxfv164d+/fopWQJZQK1WIzo6GpGRkZAkqcyp9efNmwe1Wq1AdURE5EwcaoxKYWEhcnJyTBZSRkREBDZs2IDg4GCT9ZIkYcWKFbw0mYiIZOFQQSUqKgq+vr7GJSQkROmSqrWIiAikpaUhPj4eX3/9NRo3bgwhBM6dO6d0aURE5CTsZsI3SZIQFxeHQYMGlbtPYWEhCgsLjY9zcnIQEhLCCd/sRFxcHCIiIuDj44PU1FTUqlVL6ZKIiMgOOe2EbxqNBj4+PiYL2Y/HH38cYWFhyMnJwbx585Quh4iInIBDBRWybyqVCtOmTQMAREdH48aNGwpXREREjk7RoJKbm4ujR4/i6NGjAIDU1FQcPXq03PvIkP0bNGgQW1WIiEg2io5RSUhIQM+ePUutHzlyJFauXFnh83lTQvv07bffIjIyEj4+PkhLS4Ofn5/SJRERkR1xmDEqPXr0gBCi1GJOSCH79cQTT6Bt27ZsVSEioirjGBWS3d1jVf766y9lCyIiIofFoEJWYWhVyc7OZqsKERFZjEGFrEKlUuHdd98FcGc6fbaqEBGRJRhUyGoiIiLQpk0bZGdnIzo6WulyiIjIATGokNWUHKsyd+5ctqoQEVGlMaiQVbFVhYiIqoJBhayKY1WIiKgqGFTI6p588km0bt0af/31F+bPn690OURE5EAYVMjqSraqcKwKERFVBoMK2URkZCRatWrFVhUiIqoUBhWyibuvAMrOzla4IiIicgQMKmQzbFUhIqLKYlAhmyk5VmXOnDlsVSEiogoxqJBNlWxVWbBggdLlEBGRnWNQIZtSq9VsVSEiIrMxqJDNRUZGomXLlrhx4wZbVYiI6J4YVMjm7m5VycnJUbgiIiKyVwwqpIjBgwezVYWIiCrEoEKKUKvVeOeddwAAs2fPZqsKERGViUGFFPPUU0+hRYsWuHHjBj799FOlyyEiIjvEoEKKKTlWha0qRERUFgYVUpShVeXPP//E/PnzkZCQgDVr1iAhIQE6nU7p8oiISGGSEEIoXYSlcnJy4Ovri+zsbPj4+ChdDlkoJiYGI0aMgCRJKPlx1Gq1iI6ORkREhILVERGR3Crz/c0WFVKcm5sbAODuzJyRkYHIyEjExsYqURYREdkBBhVSlE6nwyuvvFLmNkNwmTRpEruBiIiqKQYVUlRSUhIuXbpU7nYhBNLT05GUlGTDqoiIyF4wqJCiMjMzZd2PiIicC4MKKSowMFDW/YiIyLkwqJCiwsPDodVqIUlSufvUrl0b4eHhNqyKiIjsBYMKKUqtViM6OhoAyg0r169fx5tvvoni4mJblkZERHaAQYUUFxERgQ0bNiA4ONhkvVarxaBBgwAAn3zyCfr06YM//vhDgQqJiEgpnPCN7IZOp0NSUhIyMzMRGBiI8PBwqNVqrF+/Hs899xzy8vIQEhKC2NhYdOjQQelyiYjIQpX5/mZQIYeQnJyMJ554AqdPn4ZGo8GiRYvwn//8R+myiIjIApyZlpxOq1at8Ouvv2LgwIEoLCzEqFGjMGbMGBQWFipdGhERWRGDCjkMX19fxMXF4b333oMkSViyZAm6d+9+zwnjiIjIsTGokENRqVSYOnUqtmzZAj8/P+zfvx8PPPAAEhMTlS6NiIisgEGFHFK/fv1w8OBBtGvXDllZWejVqxfmzZsHIQR0Oh0SEhKwZs0aJCQk8D5BREQOjINpyaHdunULo0ePRkxMDIA7E8idP38eGRkZxn20Wi2io6MRERGhVJlERFQCr/qpqq1bgWeeAYKC7izBwaV/Dg4G6tQBVGyUUpoQAgsWLMArr7wCvV5farthIrkNGzYwrBAR2QEGlar6/HPg+ecr3s/FBQgMLDvIlPzZxwe4xxTxVHU6nQ6BgYHlTggnSRK0Wi1SU1OhVqsrddyy5nYhIiLLVeb728VGNTmWp54CHngAuHz5zpKRUfrnrCyguBhIT7+z3IunJ1Cz5p3AYu7i62v6uEYNwNXVJm/fESUlJd1z1lohBNLT0/HVV1/h3//+N1xcKv7ox8bGYuLEiSZXFbEbiYjIttiiYqnbt4ErV8oPMoafs7Ple00PjzuBxcvrTvjx8vpnKfm4vJ/LeuztfedPNzf56lTAmjVrMHz4cLP21Wg0aNWqFdq2bYuwsDDjUq9ePeM+sbGxiIyMxN3/PNiNRERUdez6sSd5eXcCTU6O5cutW9av09X1n+BiCC8l/6xonYfHncXdvfzFiuN5EhIS0LNnzwr3c3d3R0FBQZnb6tati7CwMLRp0wZffvklbty4UeZ+lnYjERHRHQwqzqa4GLh585/gkpd3J7zk5f2zWPI4N/dOy5CtuLmVHWDuDjiurv8sLi7lPy7xs16txtTp0/HHX3+hCMDtv5cCAPl//+lTrx6+27YNl2/cQHJqKn47fRpHTp7E0RMncObMmVKtJxWJj49Hjx495D5LREROj0GFzFdU9E94yc3958+SP1e0LjcXKCj4Z8nP/+fPMq7CsTtqNYSHB4pdXVEoSbhRWIhreXnIB0yWghJLIYDeAwYgrGPHfwKWRmMauMx5rNFwoDURVTsMKmQ/iovLDjFlLYZtt2//sxQXl/1zOY8zL17EyePHoSsshBsAdwA+rq7Q1q4Nb5XqzmsYXsdeGAJLWYGmop81mjstVXIsZbVesWuLiKyAV/2Q/XBx+Wc8iw0EAvD/+5LijL8vKX6grEuKhfgnHN216HJz8eyQIci7dg3uADz+XjS4E3w0ADwlCW5CGB97u7igQUAAQurUQR1vb6hu3zYNYYWFEAUFEHl5d7aVVFh4Z8nJsfr5qTRJqnQ3HFxd/wlfJQNVRevKW1/ea5S1cF4jIqfDFhWiMhiu+gFgMnbFcNXP+vXrERwcjPXr1+Obb74xuYTZx8cHjz/+OAYPHozevXtDo9GUutTZFUDjoCB88v77ePThh00CTUU//374MH7+/nsU3bwJNwBuAPy8vND1wQcRGhBwpzuvskthIeAMtxpQqcoPMS4uZS9qdeXXV2ZRqe69XZLkWVSq8t+jue/NsKhU7JIkq2LXD5EMyppHJSQkBPPmzTO5NFmv12P//v345ptvsH79epPp+318fNC+ffsyb5poyaXOVr1sWgjzu9oq6oYzBCtDa5FhuXtdRY8LC02PW3JxhPFPjkqlKn2l391X/Zmzzsur9AD5slrHGIqqHQYVIplUdmZavV6PvXv3Yv369Vi/fj0uX75c4Wv4+/tjy5Yt8Pb2hqenp3Fxd3eHqkRXhk6nQ4MGDUyCU0nVbvZdvb50QLrXUlx8Z9Hp/vm5rMfm7KPTybcIIc+i15f9Xu71PouLlf5bvEOtLr8VrKxxU2UtldlmaDm612uZ0+Vo2KZSlb0YWtTMXYQwrwX09u2K9zF8tRtCYFX+bNkSGDhQ1r9yBhUiO6DX67Fw4UJMmDDB4mO4u7vD09MTHh4eAGDSWlOe7du3o1evXmYdX87Zdx028FRnhoBzd5gpKDC9wu/uq/3uXnev7Xe3irElzPEMGwb8feNXuTjUYNpFixZh1qxZyMzMROvWrTFv3jyEh4crXRZRlalUKtSpU8esfWvWrAkAyM/PR2FhoXF9QUFBuRPUlad3794IDQ1FaGgoGjRoUOpPrVYLV1fXcruRMjIyEBkZWekuKd5uwAFJ0j+tDBqNbV5Trzev9au89eW1TFVmmyGYmfuaFdVpCHyWLiX/Dbq4lH9lnqureVfwGVp5DMet6p+dOlnns2AmRVtU1q1bh6effhqLFi1C165dsWTJEixfvhzJycmoX79+hc9niwrZO3NnzC05eZxOp0N+fj7y8/Nx69Yt3Lp1C/n5+fjll1+q1DpjoFKpEBQUhKysLBQVFZW5T2W6kXi7AaIqMnTfAdXmyjWH6frp1KkT7r//fixevNi4rmXLlhg0aBCioqIqfD6DCtk7w7iSjIyMMme+rUwgMOdYwcHB2L17Ny5duoS0tDRcuHCh1J8lW2wq0rBhQzRp0gQBAQFlLnXr1sX9998v+7gZObFLisj+VOr7WyiksLBQqNVqERsba7J+woQJolu3bmU+p6CgQGRnZxuX9PR0AUBkZ2fbomQii3z77bdCkiQhSZIAYFwM67799lubHUun04nMzEwxY8YMk+dbe4mPj6/iWbTMt99+K7RarUktWq22Uue8pOLiYhEfHy9iYmJEfHy8KC4ulrliouohOzvb7O9vxcaoXLt2DTqdzuSOtQBQr149XLlypcznREVFYcaMGbYoj0g2ERER2LBhQ5ljOO6+1Nnax1KpVAgICEC3bt3Mer2ZM2ca/02WtZR348a7ZWZmmrWfnOQcg2M4HsfhODa2rjkmxbp+Ll++jODgYOzZswedO3c2rv/ggw/w1Vdf4eTJk6WeU1hYaNJsnZOTg5CQEHb9kEOQ8z/Jqh5Lri6pbdu2oU+fPhW+nq1v4GjOpdxBQUFIS0uDi0vFv69xHI7jkzto2tO/Z0fkEFf91KlTB2q1ulTrSVZWVqlWFgONRgONrUamE8lMrVbL9mVd1WOp1WpER0cjMjISkiSVOfvuvHnzKvzPslevXtBqteUGHgBwcXGBt41uoWCQlJRUbkgB7sw2nJGRAXd3dwQEBMDf3x/16tWDv7+/yc/16tVD7dq1MW7cuDLfnxACkiRh0qRJePzxx53+y8VR2XPrGlvqzGCt/idzdOzYUbz00ksm61q2bCnefPNNs55fmT4uIiqtrDEcISEhsoybKbm4ubmJOXPmCJ1OZ8V384/ly5fbdAwOFByHQ/dWXFxc6jNecpEkSYSEhJg93sjweS/rOJaOOZPjWCXfr1zjqKw5Jqsy3992cXnyZ599hs6dO2Pp0qVYtmwZTpw4gdDQ0Aqfz6t+iKpOjmbn8m438L///Q8bN27Ed999B+DOHC+rVq1CQECArO/BQAiBmJgYjB8/3qzxM+vWrUOjRo2QlZWFq1evmvxp+PnChQvIzs6u8FgxMTEYNmyYHG+D7lKVz6i5UwQ8/PDDaNy4Mby8vODt7Q0vLy+TxdvbG+7u7hg6dCiysrLKPIYlV/HJecWcI7X0OMRVPwYLFy4UoaGhws3NTdx///0iMTHR7OeyRYXIfpT325derxeLFy8WHh4eAoCoW7eu2Lx5s+yv//vvv4vu3bsbfyt1cXGR5bfo+Ph4s1pURo0aJa5evSr7+6ruKnvlll6vF+fOnROrV68W48aNEw0bNrR565q7u7vw9fUVtWvXFvXq1RPBwcEiNDRUNG7cWDRv3ly0atVKNGrUyKxjzZ8/X5w7d07k5eVVeJ7suaXnbg7TolJVbFEhchzJyckYNmwYjh07BgAYN24cZs2aBXd39yod9+bNm/jf//6HefPmobi4GB4eHpg6dSoaN25sbOEQZYzBMXdcQkUDj0tyc3PDU089hXHjxqFjx47G13IU9jZA1JxBzI888ggOHDiAffv2GZc//vij0vWOGTMGAQEByMvLM1lyc3ONP2dmZipyBZtBjRo1EBgYiICAAOOfAQEBqFevHl5//XVcu3atzOcp3dJTFodqUakKtqgQOZb8/HwxadIk429obdq0EcePH7foWHq9Xqxbt04EBwcbjzdo0CCRlpZm3EeOMTiG49xr/prx48eLjh07mmzr0KGDWLFihbh161aZx5Sr/1+u48g554wcx6pobAkA4erqWuZv/m5ubuJf//qXmDRpkoiJiRGBgYHljqGyRutaTEyMOH36tEhOThbHjh0Thw8fFr/++qvYs2eP2LVrl9i5c6eYNWuWWccKDAw0tkZWdfHz8xNBQUEiJCREhIaGikaNGokmTZqIZs2aiZYtW4rWrVub3dJT1TFZlfn+ZlAhIpv78ccfhb+/vwAgNBqNWLBggdDr9WY//+TJk+Lhhx82/qfZuHFjsWXLljL3teYX+d2hZ//+/eKZZ54RGo3GuE/t2rXFG2+8IVJTU+95LEtCgZzHUaLboKioSGRlZYlTp06J/fv3i61bt4q1a9eKzz77TIwePdrsL+DQ0FAxZMgQMXfuXLF3715RUFBQZk1VnXTREJ7kCD2VOZZerxfZ2dni5MmTIiEhQaxdu1bMnTtXvPHGG2LkyJGibdu2sgSZyiwxMTFmfybKwqBCRHbvypUrol+/fsb/+B577DGRlZUlhCg/XOTm5oopU6YIV1dXY8iZPn26yM/Pt0nN5oaerKwsERUVJerXr2/yxTNw4EDxzjvvyBIK5AoX5lwVExwcLC5evCjOnTsnTpw4IQ4dOiR2794ttm/fLjZv3iw2bNggvv76a7F06VJRs2bNe37Bubq6iqCgIOHl5SXLF+bChQvNPl+2aF2z5UzTBua29CxbtkwcPnxYHDhwQOzfv1/s2bNH7N69WyQmJor4+Hixfft2s1t6bNmiwjEqRKQYIQQWLFiA//73vygqKkJAQABGjx6NFStWlLraYNiwYVi7di3S09MBAI8++ijmz5+PRo0aKVV+hXQ6HTZv3oxPP/0U27dvr3B/w/2afvvtN+h0OhQVFaGwsBBFRUUmS35+PoYOHVrumAQA8PHxwUsvvYTbt28b78JdWFhY6uesrCycPn1azrddaT4+PqhZsyZq1qwJPz8/1KxZEwUFBdi6dWuFz63MZIJyjcEp7yq3ys40LdexbH1PMVuPUWFQISLFHTt2DMOGDUNycnKF+4aGhmL+/PkYOHCgDSqTz8mTJ/HWW28hLi5O6VIsIkkSPD094e7uDg8PD7i7u5darl+/jiNHjlR4rPfffx9Dhw6Fn58ffHx8ypwd2FZfmJay14HHAKo0eFzuY5WHQYWIHE5ubq7xqovy+Pj44NKlS6hRo4YNK5PPmjVrMHz4cLP3d3V1hZubW6mloKAAGRkZFT6/b9++aNeuHTQajTFM3P3z6dOn8dZbb1V4LHNaLsyds8TcVhBbfGE6E3tr6bkXXvVDRA7H3H52R54B1tz3uHXr1nvO4ivnuVJqgKi55BpbUl0448y0it3rh4ioJHPnp1ByHouqCg8Pv+e9kQzdGb169YJKparyccLDwyusSa77Psl9LIOIiAg8/vjj1e6mfZayp3uKyaX8fwlERDYUGBgo6372yPBFDqDUZHCV+SKX6zgGERER2LBhA4KDg03Wa7XaSnevyHksA8MX5rBhw9CjRw+GlGqGY1SIyC7Y++BJOcnV/y/3OAJ7GyBKzouDaYnIIVWnwZNyfZEzEJAjYlAhIodl7asNiEh5DCpE5NDYSkDk3Crz/c2rfojI7tjL1QZEpDxe9UNERER2i0GFiIiI7BaDChEREdktBhUiIiKyWwwqREREZLcYVIiIiMhuMagQERGR3WJQISIiIrvFoEJERER2y6FnpjXM/p+Tk6NwJURERGQuw/e2OXfxceigcvPmTQB3blhGREREjuXmzZvw9fW95z4OfVNCvV6Py5cvo0aNGpAkCTk5OQgJCUF6ejpvUmhDPO/K4HlXBs+7MnjelWGt8y6EwM2bNxEUFASV6t6jUBy6RUWlUkGr1ZZa7+Pjww+yAnjelcHzrgyed2XwvCvDGue9opYUAw6mJSIiIrvFoEJERER2y6mCikajwbRp06DRaJQupVrheVcGz7syeN6VwfOuDHs47w49mJaIiIicm1O1qBAREZFzYVAhIiIiu8WgQkRERHaLQYWIiIjsltMElUWLFqFhw4Zwd3fHAw88gKSkJKVLcmrTp0+HJEkmS0BAgNJlOZ1du3ZhwIABCAoKgiRJ2Lhxo8l2IQSmT5+OoKAgeHh4oEePHjhx4oQyxTqRis77s88+W+rz/69//UuZYp1IVFQUHnzwQdSoUQP+/v4YNGgQTp06ZbIPP/PyM+e8K/mZd4qgsm7dOkyaNAlvv/02jhw5gvDwcPTr1w8XL15UujSn1rp1a2RmZhqX48ePK12S08nLy0O7du3w6aeflrl95syZmDNnDj799FMcOHAAAQEBeOSRR4z3wSLLVHTeAaBv374mn/8ffvjBhhU6p8TERIwdOxb79u3Dzz//jOLiYvTu3Rt5eXnGffiZl5855x1Q8DMvnEDHjh3FmDFjTNa1aNFCvPnmmwpV5PymTZsm2rVrp3QZ1QoAERcXZ3ys1+tFQECA+Oijj4zrCgoKhK+vr/jss88UqNA53X3ehRBi5MiR4vHHH1eknuokKytLABCJiYlCCH7mbeXu8y6Esp95h29RKSoqwqFDh9C7d2+T9b1798aePXsUqqp6OHPmDIKCgtCwYUMMHToU58+fV7qkaiU1NRVXrlwx+exrNBp0796dn30bSEhIgL+/P5o1a4bRo0cjKytL6ZKcTnZ2NgCgVq1aAPiZt5W7z7uBUp95hw8q165dg06nQ7169UzW16tXD1euXFGoKufXqVMnfPnll9i6dSuWLVuGK1euoEuXLrh+/brSpVUbhs83P/u2169fP6xevRo7d+7E7NmzceDAATz00EMoLCxUujSnIYTA5MmT8X//939o06YNAH7mbaGs8w4o+5l36LsnlyRJksljIUSpdSSffv36GX9u27YtOnfujMaNG2PVqlWYPHmygpVVP/zs296QIUOMP7dp0wYdOnRAaGgotmzZgoiICAUrcx7jxo3DsWPHsHv37lLb+Jm3nvLOu5KfeYdvUalTpw7UanWpNJ2VlVUqdZP1eHl5oW3btjhz5ozSpVQbhqus+NlXXmBgIEJDQ/n5l8n48ePx/fffIz4+Hlqt1rien3nrKu+8l8WWn3mHDypubm544IEH8PPPP5us//nnn9GlSxeFqqp+CgsLkZKSgsDAQKVLqTYaNmyIgIAAk89+UVEREhMT+dm3sevXryM9PZ2f/yoSQmDcuHGIjY3Fzp070bBhQ5Pt/MxbR0XnvSy2/Mw7RdfP5MmT8fTTT6NDhw7o3Lkzli5diosXL2LMmDFKl+a0XnvtNQwYMAD169dHVlYW3n//feTk5GDkyJFKl+ZUcnNzcfbsWePj1NRUHD16FLVq1UL9+vUxadIkfPjhh2jatCmaNm2KDz/8EJ6enhg+fLiCVTu+e533WrVqYfr06XjyyScRGBiItLQ0vPXWW6hTpw6eeOIJBat2fGPHjkVMTAy+++471KhRw9hy4uvrCw8PD0iSxM+8FVR03nNzc5X9zCtyrZEVLFy4UISGhgo3Nzdx//33m1xWRfIbMmSICAwMFK6uriIoKEhERESIEydOKF2W04mPjxcASi0jR44UQty5XHPatGkiICBAaDQa0a1bN3H8+HFli3YC9zrvt27dEr179xZ169YVrq6uon79+mLkyJHi4sWLSpft8Mo65wDEihUrjPvwMy+/is670p956e8iiYiIiOyOw49RISIiIufFoEJERER2i0GFiIiI7BaDChEREdktBhUiIiKyWwwqREREZLcYVIiIiMhuMagQERGR3WJQISIq4dlnn8WgQYOULoOI/sagQuSknn32WUiSVGopeQ8bS/Xo0QOTJk2qepFERBVwipsSElHZ+vbtixUrVpisq1u3rkLVlFZUVAQ3Nzely7A6IQR0Oh1cXPhfLlFlsUWFyIlpNBoEBASYLGq1GnPmzEHbtm3h5eWFkJAQvPzyy8jNzTV57i+//ILu3bvD09MTfn5+6NOnD27cuIFnn30WiYmJiI6ONrbSpKWlAQASExPRsWNHaDQaBAYG4s0330RxcbHxmD169MC4ceMwefJk1KlTB4888kiZdRu6Xz755BMEBgaidu3aGDt2LG7fvm3cR5IkbNy40eR5NWvWxMqVKwEAaWlpkCQJ33zzDcLDw+Hh4YEHH3wQp0+fxoEDB9ChQwd4e3ujb9+++OOPP0rVMGPGDPj7+8PHxwcvvvgiioqKjNuEEJg5cyYaNWoEDw8PtGvXDhs2bDBuT0hIgCRJ2Lp1Kzp06ACNRoOkpCSz/s6IyBSDClE1pFKpMH/+fPz+++9YtWoVdu7ciddff924/ejRo+jVqxdat26NvXv3Yvfu3RgwYAB0Oh2io6PRuXNnjB49GpmZmcjMzERISAgyMjLQv39/PPjgg/jtt9+wePFifP7553j//fdNXnvVqlVwcXHBL7/8giVLlpRbY3x8PM6dO4f4+HisWrUKK1euNIaQypg2bRqmTp2Kw4cPw8XFBcOGDcPrr7+O6OhoJCUl4dy5c3j33XdNnrNjxw6kpKQgPj4ea9asQVxcHGbMmGHcPnXqVKxYsQKLFy/GiRMn8Morr+Df//43EhMTTY7z+uuvIyoqCikpKQgLC6t07UQEwCb3aCYimxs5cqRQq9XCy8vLuERGRpa57zfffCNq165tfDxs2DDRtWvXco/dvXt3MXHiRJN1b731lmjevLnQ6/XGdQsXLhTe3t5Cp9MZn3ffffeZVXtoaKgoLi42rhs8eLAYMmSI8TEAERcXZ/I8X19f463pU1NTBQCxfPly4/Y1a9YIAGLHjh3GdVFRUaJ58+Ymr12rVi2Rl5dnXLd48WLj+8jNzRXu7u5iz549Jq89atQoMWzYMCGEEPHx8QKA2LhxY4XvlYjujR2mRE6sZ8+eWLx4sfGxl5cXgDutFR9++CGSk5ORk5OD4uJiFBQUIC8vD15eXjh69CgGDx5cqddKSUlB586dIUmScV3Xrl2Rm5uLS5cuoX79+gCADh06mHW81q1bQ61WGx8HBgbi+PHjlaoJgElLRr169QAAbdu2NVmXlZVl8px27drB09PT+Lhz587Izc1Feno6srKyUFBQUKrbqqioCO3btzdZZ+57JaLyMagQOTEvLy80adLEZN2FCxfQv39/jBkzBu+99x5q1aqF3bt3Y9SoUcYxIB4eHpV+LSGESUgxrANgst4Qliri6upq8liSJOj1epPHhuMblBzDUtZxDHXcva7kce+l5L5btmxBcHCwyXaNRmPy2Nz3SkTlY1AhqmYOHjyI4uJizJ49GyrVnWFq33zzjck+YWFh2LFjh8m4jJLc3Nyg0+lM1rVq1QrffvutSWDZs2cPatSoUeoLXQ5169ZFZmam8fGZM2dw69YtWY7922+/IT8/3xjY9u3bB29vb2i1Wvj5+UGj0eDixYvo3r27LK9HROXjYFqiaqZx48YoLi7GggULcP78eXz11Vf47LPPTPaZMmUKDhw4gJdffhnHjh3DyZMnsXjxYly7dg0A0KBBA+zfvx9paWm4du0a9Ho9Xn75ZaSnp2P8+PE4efIkvvvuO0ybNg2TJ082BiI5PfTQQ/j0009x+PBhHDx4EGPGjCnVCmOpoqIijBo1CsnJyfjxxx8xbdo0jBs3DiqVCjVq1MBrr72GV155BatWrcK5c+dw5MgRLFy4EKtWrZLl9YnoHwwqRNXMfffdhzlz5uDjjz9GmzZtsHr1akRFRZns06xZM2zbtg2//fYbOnbsiM6dO+O7774zzgPy2muvQa1Wo1WrVqhbty4uXryI4OBg/PDDD/j111/Rrl07jBkzBqNGjcLUqVOt8j5mz56NkJAQdOvWDcOHD8drr71mMq6kKnr16oWmTZuiW7dueOqppzBgwABMnz7duP29997Du+++i6ioKLRs2RJ9+vTBpk2b0LBhQ1len4j+IYm7O3mJiIiI7ARbVIiIiMhuMagQERGR3WJQISIiIrvFoEJERER2i0GFiIiI7BaDChEREdktBhUiIiKyWwwqREREZLcYVIiIiMhuMagQERGR3WJQISIiIrv1/6KklFZ/ARVXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Import\n", "from horns import parallel_analysis\n", "\n", "# Conduct\n", "pa_results = parallel_analysis(bf3.to_numpy(), simulations=500, analysis_type='fa', full_output=True)" ] }, { "cell_type": "markdown", "id": "e1846ade-dda3-4de4-9f1a-d9a3d74395d1", "metadata": {}, "source": [ "Parallel analysis returns a plot and a dictionary of results. The plot shows the cutoff points at which number of factors are most 'surprising' given a dataset of this size and shape. We can access the number of factors as follows:" ] }, { "cell_type": "code", "execution_count": 19, "id": "077e3977-29ff-4635-ad09-1c3442c5908e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8\n" ] } ], "source": [ "# Print number of factors\n", "print(pa_results['factors'])" ] }, { "cell_type": "markdown", "id": "7cadb327-14e2-40d1-a74d-35811db41868", "metadata": {}, "source": [ "So despite us selecting out 5, parallel analysis suggests there *eight* latent factors in the data! \n", "\n", "EFA is as much an art as it is a science (much like other forms of modelling), so take care when conducting it. Blindly following one approach (like top-down theory) or another (bottom-up approaches like parallel analysis) can lead you astray. To finish, let's see what an 8-factor solution of personality looks like:" ] }, { "cell_type": "code", "execution_count": 20, "id": "36b0c163-a345-4752-9b33-b1fca2d986e9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAGdCAYAAACl74FWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1QU1/+/Xyy9s3Sk9yLSQbH3rlgSjQ1r1BS7KcZE/Wg0mhhjiqKxpxkLKB1FRAVElKJGKQJLb9J3qSvu/v7g7Hx32ALIjIXfPufsOexwZ/bevTOzd255P3J8Pp8PGTJkyJAhQ4aMPsJ40xmQIUOGDBkyZPQPZI0KGTJkyJAhQwYlyBoVMmTIkCFDhgxKkDUqZMiQIUOGDBmUIGtUyJAhQ4YMGTIoQdaokCFDhgwZMmRQgqxRIUOGDBkyZMigBFmjQoYMGTJkyJBBCbJGhQwZMmTIkCGDEhTedAakcfny5TedBUpwc3N701mghCdPnrzpLPSZFy9evOksUAKD8e4/D1haWr7pLFDCgQMH3nQWKGHRokVvOgt9Zs6cObR/hpycHGXH6o8BrV+5UXH37l2MGDECEyZMQExMDOl/GzZsQGJiIp48eQJnZ2c8fPiwr/nsMffu3UNiYiI4HA4MDQ0xbdo0WFlZSUxfUFCAqKgoPH/+HJqamhgxYgQGDx5MStPa2orY2Fg8ffoUbW1tYDKZmDJlChwdHWkrB5/Px/nz53Ht2jU0NTXBwcEBa9eulXojvnbtGm7evImioiIAgJ2dHQIDA+Hg4EBKFxkZiZCQENTX18PCwgIffvghBg4cSHkZkpOTkZCQQNTF9OnTYW1tLTE9i8VCZGQkURejRo0SWxfXr1/H06dP0draCiaTialTp8LJyYny/AOd36GjoyNUVVXR2NiIjIwM1NTUSExvYGAADw8PaGtro7W1FdnZ2cjPzyelcXBwgK2tLdTU1MDlclFSUoLHjx+Dx+PRUgYAsLW1haOjI1RUVMBms/Hw4UOp5dDX14eHhwe0tLTQ2tqKnJwcsFgs4v+jRo2CoaGhyH4VFRVITEykpQxA53Vx5coVxMfHo7m5Gba2tli6dCnMzMwk7lNaWorg4GAUFhaipqYGixYtwuTJk0XS3bhxA5GRkWhsbISpqSkWL15MyzU+adIkBAQEgMlkoqSkBGfOnEFWVpbYtAMHDsTu3btFtq9fvx5lZWUAgMGDB2POnDkwMTGBvLw8KioqEB4ejtu3b1Oed2H6w/X9KlDZqOiPvHKj4vTp01i3bh1OnjyJ4uJiWFhYEP/j8/lYsWIFUlJS8PjxY0oy2hMeP36MqKgozJgxA5aWlnjw4AHOnTuHDRs2QEdHRyR9XV0dzp07B19fX7z//vsoKipCeHg41NXV4erqCgDo6OjAmTNnoK6ujoULF0JLSwuNjY1QVlamtSzBwcG4evUqNm7cCFNTU1y4cAE7duxAUFAQ1NTUxO7z33//YeTIkXB2doaioiJCQkKwY8cOHDlyBHp6egCAhIQEnDx5EmvXroWLiwtiYmKwa9cuHDlyROyPxKvy+PFjREZGIiAgAJaWlkhJScHZs2exadMmiXVx9uxZ+Pr6Yv78+SgqKkJoaKhIXZw6dQoaGhpYuHAhtLW1aa0Lc3NzeHh4ID09HdXV1bCzs8PIkSMRExODlpYWkfTq6uoYOXIkWCwW7t27BwMDA3h5eaG9vR2lpaUAOp/O3dzccP/+fdTU1EBTU5O4sdLV+DYzMyPKUVNTAxsbG4wYMQIxMTFobW0VSa+mpoYRI0aAxWIhJSUF+vr6RDkEP2R3794l9ZYoKytjwoQJKCkpoaUMAiIjIxEdHY3Vq1fD2NgYoaGhOHDgAL7//nuoqqqK3YfL5cLQ0BB+fn74+++/xaa5d+8e/vrrLyxbtgz29vaIj4/HDz/8gP3790NfX5+y/A8dOhTLly/HiRMnkJ2djYkTJ2L79u3YuHGj1Ebep59+SqorNptN/N3U1ITg4GCUlZWho6MDPj4++OSTT9DY2EjbOdUfrm8Z9PBKfajNzc24ePEiPvroI0yfPh1nz54l/f+XX37BJ598AhsbGyry2GOSkpLg7e0NX19fopdCW1sbKSkpYtPfv38fOjo6mDZtGgwNDeHr6wsvLy/Sk1ZaWhpaW1uxePFiWFpagslkwsrKCiYmJrSVg8/nIywsDPPmzcPQoUNhaWmJTZs2ob29XerTx9atWzFt2jTY2NjA3Nwcn376KXg8Hh49ekSkuXr1KiZMmIBJkybB3NwcH374IfT19REdHU1pGRISEuDj40PUxYwZM6CtrY179+6JTZ+SkgIdHR3MmDGDqAtvb2/cuXOHSCOoiyVLlsDKyor2unB0dERBQQFYLBY4HA4yMjLQ2toKW1tbseltbW3R0tKCjIwMcDgcsFgsFBQUkJ529fT0UFNTg+LiYrS0tKCqqgrFxcXQ1dWlpQxAZ89IQUEBCgoKwOFw8OjRI7S0tHRbjkePHoHD4RD7CpfjxYsXaG9vJ15GRkZ4+fIl0XiiAz6fj5iYGAQEBMDX1xfm5uZYs2YNuFwukpOTJe5nY2ODBQsWwN/fH4qKimLTREdHY9SoURg9ejTRS6Gnp4e4uDhKyzBjxgzcvHkTcXFxKCsrw5kzZ1BbW4tJkyZJ3a+xsRENDQ3ES7hX6+nTp7h//z7KyspQVVWFyMhIFBUV0fp03x+u71dFTk6Osld/5JUaFRcuXICjoyMcHR2xePFinDlz5o2PDXV0dKC8vBx2dnak7XZ2diguLha7T0lJiUh6e3t7lJWV4eXLlwCA7OxsmJubIywsDPv27cPPP/+MW7du0dpVXVVVhfr6enh6ehLbFBUV4erqiuzs7B4fp729HS9fvoSGhgaAzh+CvLw80nEBwNPTU2L366sgqAt7e3vSdnt7e4l1UVxcLJLewcGBVBeZmZmwsLBAaGgo9u7di8OHDyM+Pp6WumAwGGAymaisrCRtr6yslPjkqqenJza9rq4ucQOprq4Gk8kkGhHq6uowMTFBeXk55WUAOm+A4spRVVUltRxVVVWkbZWVlWAymRJvhNbW1igpKSHqig6qq6vR2NhIPNkCndeFk5MTcnNzX/m4HR0dKCwsxKBBg0jbXV1d+3TcrigoKMDW1lak9+DRo0fdDrMcPHgQJ0+exM6dO0nlF8egQYMwYMAAZGZm9jXLYukP13dfkDUqpPNKwx+nTp3C4sWLAQCTJ09GU1MT4uLiMH78eEoz1xtaWlrA4/GIH1ABGhoaaGpqErsPh8MROdE1NDTA4/HQ3NwMLS0t1NXVoaGhAe7u7li6dClqa2sRFhYGHo+HsWPH0lKW+vp6ABDpRtTR0cHz5897fJxz585BT08PHh4eADq7THk8ntjjNjQ09CHHZKTVBYfDEbsPh8MRm164Lurr68FiseDh4YFly5ahpqYGoaGh4PF4GDduHGX5BwAlJSUwGAy0tbWRtre1tUFFRUXsPqqqqiI/3m1tbWAwGFBWVkZbWxtKSkqgoqKCsWPHQk5ODgwGA3l5eb1qLPYGZWVlMBgMtLe397gcKioqIuVub28nlUMYJpMJbW1tPHjwgNrMd0Fwjmpra5O2a2lpoba29pWPy+FwwOPxoKWlRdou6H6nCk1NTcjLy4scs6GhQeyQAdB5LwgKCkJ+fj4UFRUxatQo7Ny5Ezt37iQ1GtTU1PD7779DUVERPB4PJ06coG3ouT9c332hP0ySppNeNypycnJw//59hISEdB5AQQHz58/H6dOn+9SoEHSjCvPixQuJ3ZWS6Nr6664HRVJrUbCdz+dDXV0ds2bNAoPBgKmpKdhsNhISEihrVNy6dQtHjhwh3u/YsUNs3vh8fo9bt8HBwbhz5w727dsHJSUl0v96+x1RibT8S8qXYDuPx4O6ujpmz54tUhdv001HmK5lMjAwgLOzM9LT01FbWwsNDQ14enrCxcWFtidLQHwdv0q9i9vH2toajY2NRGOYKpKSknDmzBni/ZYtWwDQN1GuL9dbb+j6HUr7jPLyclIv1rNnz6Cvr4+ZM2eSzpfW1lZs3boVKioqGDRoEJYtW4aqqio8ffqU8vxL4/+361uGKL1uVJw6dQodHR0wNTUltvH5fCgqKqK+vh5MJvOVMvLdd9/hf//7H2nb+++/j3nz5vVofzU1NTAYDJGWcnNzs0gLWYCmpqZI+qamJjAYDGIypODpQrh1amBggKamJnR0dEBBoe+rcv38/EgrNATLHuvr60lj7Y2NjRKfaIQJCQnBpUuXsGfPHtJsbC0tLTAYDJGbf0+P21MEddG1h6ipqalXddHc3EyqC0H+hevC0NAQHA6HsroQwOVywePxRJ7mxT3FC2htbRVJr6ysDB6PRzSYBw0ahKKiImIlRWNjIxQUFODj40NLo6K9vV1iObo24gWI68UQlIPL5ZK2y8vLw8LCgpblxl5eXqThScF10fXJns1mi/Re9AZNTU0wGAyRHgQ2my3Se9EXOBwOXr58KXKtaWtr96qn8NmzZxg5ciRpG5/PJ3rJCgsLYWZmhjlz5tDSqOgP13df6K/DFlTRq36cjo4O/PHHH/jxxx/x8OFD4vXo0SNYWlpKnFndE7Zt24bGxkbSa/bs2T3eX0FBAQMGDEBeXh5pe15eHmllijDm5uZi05uamkJeXh5A52z92tpa0rhebW0tNDU1KTvJ1dTUMGDAAOJlYWEBJpNJGnt98eIFnjx50u3kq5CQEFy4cAG7du0SGdpRVFSEnZ0dMjIySNsfPnwIZ2dnSsoC/F9ddB2PllYXFhYWInWRm5vbbV0IVlBQfcPh8Xior6+HsbExabuRkZHEWfq1tbUwMjIibTM2NkZdXR3xVCYvLy/ypNr1iY1K+Hw+6uvrRfL1KuWor68XybuZmRkYDIbEsfS+oKqqCiMjI+JlamoKbW1tUgOmo6MD2dnZIud6b1BQUICVlZVIw+jJkyd9Om5XOjo6kJ+fD3d3d9J2Nzc35OTk9Pg41tbW3fYKycnJ0fYj3B+u774gm1MhnV41KiIiIlBfX4+VK1fC1dWV9Hrvvfdw6tQpAJ0n18OHD1FZWYnW1lai8dH1KUcYZWVlaGlpkV69HfoYNmwY0tLSkJqaiufPnxNrzv38/AB0xnG4dOkSkd7Pzw8NDQ1EnIrU1FSkpaVh+PDhpDQtLS2IjIxETU0NsrOzcevWLZH11VQiJyeHmTNn4tKlS0hOTkZRUREOHz4MZWVljBo1ikh36NAhnDt3jngfHByMP//8E+vXr4eRkRHq6+tRX19PWoo2a9YsxMbGIjY2FiUlJThx4gSqq6sxZcoUSsswYsQIpKamEnURERGBhoYG4nuLiYnBxYsXifSDBw9GfX09IiIiiLpITU0lPZENHjwYLS0tiIiIQHV1NVEX/v7+lOZdQE5ODqytrWFtbQ1NTU14eHhATU2NiDsxaNAg0nmQn58PdXV1eHh4QFNTk9hX+AdDMJnY3Nwc6urqMDIygqurK8rLy2kbhnr27BlsbGxgZWUFTU1NuLu7Q01NjegtcXV1ha+vL6kcampqcHd3h6amJqysrETKIcDa2hplZWVSr22qkJOTw+TJkxEeHo7U1FSUlJTg999/h5KSEukcOHbsGC5cuEC87+joQFFREYqKitDR0YH6+noUFRWRJqNOmTIFt27dwu3bt1FWVoa//voLtbW1lHe7h4eHY9y4cRg7dixMTU2xbNky6Ovr4/r16wA6A1CtW7eOSD9t2jT4+fnBxMQE5ubmWLRoEfz9/UmrtWbPng03Nzei4TVjxgyMGjWKtLKCavrD9S2DHnrV/Dt16hTGjx8vtqtx7ty52LdvH9LT07F582bS0kfBaoOCggKpgaj6ipubG1paWhAfHw8OhwMjIyMEBgYSQzIcDofUxamrq4ulS5ciMjIS9+7dg5aWFqZNm0aaXa2jo4Ply5cjKioKv/76K7S0tDB06FCR7keqmTt3LrhcLoKCgojgV7t37ybFqKiuria1dqOiotDR0YH9+/eTjrVgwQIsXLgQQOfNgM1m499//0VdXR0sLS2xc+dOSmNUAJ110dzcjLi4OKIuli1bRqoL4S5fXV1dLFu2jFQXM2bMEKmLFStWIDIyEr/88gtRF8INLSopKSmBsrIyBg4cCBUVFTQ2NiIhIYGIUaGqqkqqj+bmZty5cweenp6ws7NDa2srMjIySMssBUMcgwYNgqqqKtrb21FeXo7//vuPljIAncGflJWV4eLiQgS/klaOlpYWJCQkwMPDA7a2tmhra0NGRgYRo0KAhoYGDAwMaA+yJMy0adPA5XJx9uxZtLS0wMbGBp9//jkpRkVtbS3puqivr8fXX39NvI+KikJUVBScnJywfft2AMCQIUPQ1NSEq1evoqGhAWZmZti6dSulMSqAzvgempqaeP/998FkMlFcXIx9+/ahuroaQOekV+HPVFBQQGBgIHR1dYlAaXv37kV6ejqRRkVFBatXrybSlJWV4eeff8bdu3cpzbsw/eH6flX6aw8DVcjx3/RaUCnIwnS/XcjCdL899IcZ6LIw3W8XsjDdPUNS8MFXQVwQvXedd//OJEOGDBkyZMh4K3h7Zr/IkCFDhgwZbzmy4Q/pvNWNCiqXc71JDh48+KazQAlUT+Z8E/SX4Y/+MHRA55j/60R48ve7zHffffems/BO0B+GHulE9u3IkCFDhgwZMiiBcvX5o0ePsH//fiQmJqKmpgZWVlZYu3YtNmzYQEmGu4PP5yM6OhpJSUlobW2FpaUl5s2b162U5uHDh8SyUX19fUyfPl1kPfmdO3cQFxcHNpsNExMTzJkzR8QdQgWjRo3CpEmToK2tjfLycly4cEFkjbc4bG1tsXXrVpSXl2PPnj3E9uHDh8Pf3x8DBgwA0BmH/8qVKygsLKQ878IkJyfjzp07xOzwnqqRq6qqoKWlhZEjR2LIkCHE/1NTU8VO3t2zZ0+vlx/3FAcHB7i4uEBVVRUNDQ1ITU0lZup3RVVVFV5eXtDT04Ompiays7ORlpYmks7c3JxYrikQfNFt9xRI6u7cuYOWlhZYW1tj0aJFpCB24khLS8PVq1dRXV0NAwMDzJ49G15eXsT/Q0NDER4eTtpHS0sLhw4doqUcbm5u8Pb2hrq6Ompra3H79m2J3hRbW1u4ubnBwMAA8vLyqKurw71791BUVERKZ2dnB39/fyIs9927d0V09VTD5/Nx5MgRXLx4EWw2G25ubvjmm2+kxsW4cuUKvvrqK5HtDx8+JEyev/32Gyk6L9CpsU9ISKC2AAC8vb0xZMgQaGhooLq6mlimLg5HR0d4eXnByMgICgoKqK6uRkJCArGsWYCysjJGjx4NJycnqKiooKGhATdu3KC9PnqDbPhDOpSrz9PS0mBgYIC//voL5ubmuHv3LlavXg15eXl8+umnlGVcEjdu3EB8fDwWLVoEQ0NDXLt2Db/99hu++eYbia6DgoICnDlzBtOmTYObmxseP36M06dPY9OmTcQS2LS0NISEhGDevHmwsbFBUlISgoKCsH37dkoNkz4+Ppg/fz7++ecf5OXlYeTIkVi/fj127dqFuro6ifupqqpixYoVyM7OFhk2cnR0xP3795Gfn4+Ojg5MmjQJGzduxK5duyh1fgjz6NEjREREICAgAFZWVkhJScGZM2ewefNmiWrkM2fOwM/PD/Pnz0dhYSGhRhYWPSkrK2Pr1q2kfelqUFhaWsLb2xsPHjzA8+fPYW9vj7FjxyI8PFzsrG2BY+O///6TGExMX18fI0aMIBoS5ubmGDFiBK5du9Ynf0V3xMTEIDY2FsuXL4exsTEiIiJw6NAh7N27V+J1kZ+fj+PHj2PWrFnw9PRERkYGjh8/ji+++IJkIB4wYAARQhugr3vYwcEBo0aNws2bN1FeXg43NzfMmjULf/75p1jnhJmZGYqLi3H37l20t7fDxcUFM2fOxL///ks0DE1MTDB16lQkJycjLy8PdnZ2mDp1Ki5duiTicaGSkydP4uzZs9i3bx+srKxw7NgxrFy5EtHR0VBXV5e4n4aGBqKiokjbuqrB7ezscPr0aeK9ILgUlTg7OxMPlCUlJfDy8sIHH3yA48ePk7TsAiwsLFBQUIBbt26hra0N7u7umDdvHs6cOUPEC2EwGFi4cCFaWloQHBxMRDR9HTFQeoOsUSEdytXnK1aswC+//IJRo0bBxsYGixcvxvLlywlXCJ3w+XzcunULEydOhIeHBwYMGIDFixfjxYsXSE1NlbhffHw8HB0dMXHiRBgbG2PixIlwdHREfHw8KY2/vz+GDh0KY2NjzJ07F0wmk6RJp4IJEyYgMTERiYmJqKysxMWLF1FfX9/tWu3FixcjJSVFpOUPdMYXuX37NkpLS1FZWYk//vgDcnJytKqRExMT4ePjAz8/v1dSI/v5+cHHx0fkCUtOTg6ampqkF104OzsjPz8feXl5YLPZSEtLQ0tLCymkujDNzc1ITU1FQUGBxLkbTk5OqKiowNOnT8Fms/H06VNUVlZSGtG0K3w+Hzdu3MC0adPg7e0NU1NTrFixAlwuFykpKRL3i42NhYuLC6ZOnUr8+Do5OeHGjRukdPLy8tDW1iZedNWJl5cXnj59iqdPn6K+vh63b99GU1OTxCXbt2/fRlpaGqqqqtDQ0IC7d++ioaGB1CDy9PREcXExHjx4gPr6ejx48AAlJSUiJl8q4fP5+OOPP7BmzRpMnDgRDg4O2L9/P9ra2hARESF1Xzk5ORgYGJBeXVFQUCD9n8qHHgGDBw8mghrW1tYiNjYWbDab1IslTGxsLO7du4eKigrU19fj1q1bqKurI/XMeHh4QFVVFZcuXUJpaSnYbDZKS0t7JVF8HcgiakrntajPGxsbaTmxu1JbWws2m036sRSEpi4oKJC4X2FhocgPrJOTE7FPR0cHSkpKpKahAoFHoasDIjMzE7a2thL3Gzp0KAwMDLq9IQlQUlKCvLw8mpub+5RfSXR0dKCsrEysGrlr17OAoqIiselLS0tJOm0ul4v9+/dj3759OHv2rEhAJqpgMBjQ1dVFRUUFaXtFRYXYG3lPMTAwEDlmeXk55UGWhKmpqUFjYyMGDhxIbFNUVISjo6PUYTUWiwUXFxfStoEDB4rsU1VVhS1btuDLL7/E8ePHJQ4P9QUGgwFDQ0OR86eoqKjboU1hFBUVSe4WY2PjPh+zt5SWlqKmpgbDhg0jtikpKcHX11ckhH5XWlpaMHbsWIwePRpr164V64spKirCyJEjMX78eGzevJnyoTUGgwETExORex+LxYKZmVmPj6OkpESqC8H1PnnyZGzYsAEffvghhg4d2m9/fPsrr9SokKQ+F0dycjIuXryINWvWvHoue4ig261r97+mpqbYLjnh/bruo6WlRXSpNjc3g8fjiTyBdXfc3qKhoQF5eXmRY0oTGxkaGmLOnDk4efIkKWa+NObMmYOGhgZkZWX1Oc/iEKiRxX1fktTITU1NYtML1MhAZ1nff/99BAYGYsGCBVBQUMCxY8ckOiz6gkAZLhziHOiUhglHb+wt4oRkbW1tfTpmdwiiyIo7x6Wdv42NjSLRc7W1tUn72NjYYOXKldi0aRMCAwPR2NiI7777TkQ21VdUVVXBYDBEhp1aWlp6HIzI29sbioqKePbsGbFNXV29T8d8FQTna9eGpJ6entRz2draGvv27cPRo0dx8OBBKCsrY9GiRaS5UW5ubti/fz9OnjyJ3bt3o6amBgsXLqTUICtJKCZN3tiVIUOGQFFRkdQo0tHRgbOzM+Tk5HDhwgUkJSVh8ODBpMbX28Cb7Kk4evQorK2toaKiAm9v727nyvz9999EWH4TExMsX76c1mFWgGb1+dOnTxEQEIAdO3ZgwoQJUo8rTn3O5XJFtN3CPHjwAP/++y/xfu3atWLTvYrCWFzPy5tqMUvTs69atQphYWE97iKcNGkS/Pz8cPDgQXR0dFCZzW7pbT10FW1ZWFiQhEWWlpb49ddfcffuXcycOZPazEpATk7utariX4V79+7hzz//JN6vX79ebDoq1OfC812AzsmR27Ztw927dzFx4sReH58uHB0dMWTIEISFhYk0FOkmPDwcu3btIt4HBQWJTdfd9eHh4QEPDw/ivZeXF+bOnYu///6bCDcurA9wcHCAh4cHJk2ahNDQUCxbtqxP5eiOnl4bLi4uGDFiBC5dukRq0MnJyaG5uRlRUVGEdVVDQwP+/v6UDzP3hTf1O3DhwgVs3LgRR48exbBhw3D8+HFMmTIFmZmZYkVuiYmJCAwMxE8//YQZM2agrKwMa9euxapVq3DlyhXa8kmb+jwzMxNjx47Fhx9+SIq7Lwlx6vPFixdjyZIlEvcZNGgQySUi+JHsqkIW9xQsjLgnNg6HQ+yjrq4OBoMhNg2VsTSamprw8uXLHve0qKiowMrKCubm5liwYAGAzhOewWAgKCgIhw8fJkmgJkyYgClTpuCnn36ibdgAkKyhl6ZG1tDQ6FZD3xUGgwEzMzNaeioEyvCuPQjS1Oc9QZxWXEVFhdIfOg8PD9IqG+HrQniSbHfnr2A1hDDd6cCVlZVhampKknVRQWtrK3g8nsi5oKam1m2oYwcHB4wfPx6RkZEiQwHNzc2vdMzeMHbsWNK8D8HEw5qaGpJzp66uDnp6ej0+LoPBgKurq8QhRaCzLPb29pSu9BL0RHa9ltXU1LodUnV2dsb06dMREhIikqempibweDxSw6S2thYaGhpgMBg97ontrxw6dAgrV67EqlWrAACHDx/GtWvXEBQUJDbGyL1792BlZUU8VFhbW2PNmjX4/vvvac0nLerzp0+fYsyYMVi6dCn27t3bo2OLU5/Pnz9f6j4qKiqkCUnGxsbQ0tIi/ZB2dHQgLy9P6lJGKysrEQNjdnY2sY+CggLMzc2RnZ1NSiOwWFLFy5cvUVxcLDKOLZgw2JW2tjbs2rULe/bsIV537txBZWUl9uzZQxrznDhxIqZPn46ff/5Z6k2IChQUFGBqaipWKy8paJOlpaVYNbKZmZnE2et8Ph8VFRW0TAzk8Xioq6sTUZ8bGxv3ac5AdXW1yHi9iYkJpQ0jFRUVkjJ8wIAB0NbWxtOnT4k0HR0dyMnJkbok2sbGRuz8Hmn7vHjxApWVlWJX+PQFHo+H58+fizyRWVhYiMxREUYwATsmJkbsD2tlZaXIMS0tLaUes7eoq6vD0tKSeNnZ2UFfX58U/IvL5eLBgwe9miDK5/ORnZ0tdY4Pl8sFi8Xq0zygrvB4PFRUVIjc+6ytrUnyvK64uLhgxowZuHr1qti5PKWlpcRDqQBdXV1wOJy3qkHBYDAoe7W3t4PNZpNeXXvsgc56TEtLE+n9mzhxosQgckOHDkVpaSnR81NVVYXLly9j2rRptHwvAihXnwsaFBMmTMDmzZtRWVmJysrKbm/E4tTn0oY+xCEnJ4fRo0fj+vXrePToEcrLy/HXX39BUVERPj4+RLo//vgDYWFhxPvRo0cjOzsbsbGxqKysRGxsLHJycjBmzBgizZgxY5CcnIzk5GRUVlYiODgYdXV1JE06FcTGxmL48OEYNmwYjI2NMW/ePOjq6hImyNmzZ2P58uUAOm8q5eXlpBeHw8GLFy9QXl5OPBFNmjQJAQEBOHfuHGpra4nvt+tSNCoZPnw4Hjx4QCzHDA8PF1EjC+upu6qRHzx4gNTUVIwYMYJIc+PGDTx79gy1tbUoLy/H5cuXUV5eToplQSVZWVmws7ODra0ttLS0iPgIubm5ADp7BIYOHUrah8lkgslkQkFBASoqKmAymaRes+zsbJiYmMDFxQVaWlpwcXGBiYkJbfNbgM7rYvz48YiKikJ6ejrKyspw+vRpKCkpkdTtp06dQnBwMPF+/PjxyMzMRHR0NCoqKhAdHY2srCzSMOfFixeRk5OD6upqsFgsBAUFobW1VeR7oYL09HS4urrCxcUFTCYTI0eOhKamJh4/fgwAGDZsGOmmK2hQ3LlzBxUVFVBTU4OamhrpvpKRkQFLS0v4+PiAyWTCx8cH5ubm3U6Y7AtycnIIDAzE77//jtjYWDx79gxfffUVVFRUMH36dCLdF198QYr3ceTIESQmJqKkpARZWVn4+uuvkZ2dTXr4+v7773H//n2Ulpbi0aNH2LBhA5qamjBr1ixKy5CSkgIPDw+4u7tDT0+PsFcL7KmjR4/GjBkziPSC5bxxcXEoKyuDuro61NXVSfegtLQ0qKqqYuLEidDV1YWdnR2GDh0qNtbLm4TKORXfffcdaeWUtra22F6HmpoavHz5EkZGRqTtRkZGEpc+Dx06FH///Tfmz58PJSUlGBsbQ0dHB7/++ist34sAytXn27ZtQ3V1Nf7++2+i5wLobP3THWwJ6LwRvnjxAhcvXkRLSwusrKzwySefkLqc6+vrSeNiNjY2WLZsGSIiIhAZGQl9fX0sX76cNLTi7e2N5uZmxMTEEMGvPvroI8pXtaSmpkJdXR3Tpk0jgl/9+uuvRIwKbW3tXn/mqFGjoKioKDLnJDw8XCRwEVW4u7ujpaWFUCMbGxuT1MhsNltEjbx8+XJEREQgOTmZUCMLj9m3trYiJCQEHA4HKioqGDBgANasWQNzc3NaylBUVARlZWVCU97Q0ID4+Hiii1dVVVUkpoDwU4Cenh6sra0JpTbQeXNITEyEu7s73N3d0dTUhISEBNonT02ePBlcLhd///03mpubYWNjg82bN5Oui67KcDs7O6xevRpXr17F1atXYWBggNWrV5OWZNbX1+P3338nhhhtbGzw1Vdf9aobv6c8e/YMKioqGDJkCNTU1FBbW4vQ0FBi2ExdXZ00NDNo0CDIy8tj7NixGDt2LLE9MzMT169fB9C5micqKgpDhw6Fv78/GhsbERUVRWuMCgBYtWoV2tvbsXv3biL41cmTJ0nnU0VFBSnmB5vNxo4dO1BTUwNNTU04Ozvjjz/+IA2tVFZWYuvWrWhoaACTyYS7uzv+/fffboOc9ZasrCyoqalh+PDhRPCrf//9lxim1dDQIP1OeHl5QV5eHpMnT8bkyZOJ7YJ4NkDncNz58+cxYcIEfPjhh+BwOHjw4AGSk5MpzfvbxLZt27B582bSNmkPe13nc0ibh5OZmYn169djx44dmDRpEioqKvDZZ59h7dq1OHXqVN8zLymPb7P6XHDhv+v0F4V7f3B/0LWM9nXTH9wfb9sT6KsiaSLsu0Z/cH8IJqzSifA8mL7S0wn2XC4XampquHTpEmbPnk1s37BhAx4+fEj0ZAuzZMkStLW1kdw0iYmJGDFiBMrLy2lbNi1zf8iQIUOGDBk95E0sKVVSUoK3tzdiY2NJ22NjYyUONba0tIhEtxXMT6OzL0HWqJAhQ4YMGTLecjZv3oyTJ0/i9OnTyMrKwqZNm1BcXEwMa2/btg2BgYFE+hkzZiAkJARBQUFgsVhISkrC+vXr4efnR3ig6OCtVp9Lc128S5w/f/5NZ4ESBEuZ3mX6shz0beJ1zE+iG29v7zedBUp4m2RXfaGrQFGGeN5UnIr58+ejtrYWu3fvRkVFBVxdXREVFUUMhVZUVKC4uJhIv2zZMnA4HPz222/YsmULdHR0MHbsWBw4cIDWfL7VcyqEA1u9y3z44YdvOguUIClq6rtEf2lU0L0s+HUgPBH6XabrsuN3la7L6t9FhFfP0AWVcxGoXLr8tkC5+ry2thaLFi3C48ePUVtbC0NDQwQEBGDfvn2UBoqShJ2dHZycnKCqqorGxkZkZGRIXc5qYGAAT09PaGtro7W1FVlZWaQnDzk5Obi4uMDa2hqqqqpgs9l49OgRrbPDV61ahQ0bNsDY2BhZWVn48ssvJa5FBoB58+Zh48aNsLW1BZvNxo0bN7B9+3axPT1z587F2bNnERERQQTMogs+n48rV64QKyZsbW2xdOlSqX6A0tJSBAcHo7CwEDU1NVi0aBFptriAGzduIDIyEo2NjTA1NcXixYvh6OhIWznCw8NJ2vCFCxf2SBseGhpKaMNnzZpFEi6FhYWJ1Yb/+OOPlJfBwcEBAwcOJCncJU0SU1VVhbe3N3R1daGlpYXs7GwRIZ+2tjaxnFBDQwMPHjwQieNCB/1F4c7n8/HPP//g2rVraGpqgoODAz766COpE3BjYmJw8+ZNokFpZ2eHwMBA0nl/8eJFJCcno7S0FEpKSnB2dsayZct65eToKUlJSbh16xbYbDaMjY0REBBAWhnUlfz8fISFhaGyshJaWloYM2YMaT7A48ePERcXh5qaGvB4POjr62PUqFGkcABvA3RZePsLr/ztCNTniYmJpC4XBoOBgIAAhIWF4dmzZzh79ixu3LghMYQ2lZibm8PT0xOZmZm4du0aqqurMXLkSIkRGdXV1TFq1ChUV1fj2rVryMzMhJeXF+kCdHNzg62tLdLS0hAVFYX8/HwMHz6c8uA+AubMmYMDBw7g4MGDGD58OO7evYvg4GCJNwV/f3/8/vvv+OOPP+Dn54fAwEB4eXnht99+E0lrbm6OvXv3IikpiZa8dyUyMhLR0dEIDAzE//73P2hra+PAgQNSo0dyuVwYGhpi3rx5YpcuA52R4v766y8EBARgz549cHR0xA8//EBLZE3g/7ThCxcuxPbt26GtrY2ffvpJaq9Hfn4+fv/9dwwZMgQ7duzAkCFD8Pvvv4tYZAcMGICDBw8SL+FwzlQhiMPw33//EXFAxo4dKzVSaVtbG548eSLRGaGgoICmpiZkZGRQGn2yO4Tr4uuvv4a2tjYOHTrUbV0cP34c/v7+2LlzJ/z9/XH8+HGxdfHjjz8Sr64RfqkkODgYV69exdq1a3Ho0CEwmUx88803Ur/L//77D6NGjcJ3332HgwcPwsDAgFhiKuDJkyeYNm0aDh48iD179uDly5f45ptvKO+hy8jIQGhoKMaNG4fNmzfD2toaJ06ckHi+1NbW4uTJk7C2tsbmzZsxbtw4XL16lYgxAnRG5Bw/fjzWr1+PLVu2wNfXFxcuXHgtjVUZ1EG5+pzJZOKjjz6Cj48PLC0tMW7cOHz88cfdik+owMnJCSwWCywWC2w2m7jhSYoAaGdnh+bmZmRkZIDNZoPFYqGgoIBkI7WyskJmZiYqKirQ3NyMvLw8VFZW0qYN//TTT/HHH3/g3LlzyMnJwZdffomysjKJ8xl8fX1RVFSEY8eOoaioCMnJyTh9+rRIZD4Gg4FTp05h3759r2U8ns/nIyYmBgEBAfD19YW5uTnWrFkDLpcrdd25jY0NFixYAH9/fygqKopNEx0djVGjRmH06NFEL4Wenh4twzN8Ph9xcXGYOnUqvLy8YGpqiuXLl3erDb9x40aPtOEMBoN2bbiLiwvy8vIIhXtqaipaWlok9uwIFO4sFosIoNaV2tpapKeno7Cw8LVFO+wvCnc+n4/Q0FDMnz8fQ4cOhZWVFTZv3oz29naxSwMFfPbZZ5g2bRpsbGxgbm6OdevWgcfj4dGjR0Sa3bt3Y/z48bC0tISNjQ02btyI6upqqTbaV+HOnTvw8/PDkCFDYGRkhFmzZkFHR0dij2pycjJ0dHQwa9YsGBkZYciQIfDz88OtW7eINHZ2dhg0aBCMjIygr6+PkSNHirWhvmlk6nPp0K4+Ly8vR0hICEaNGtWnjHYHg8EAk8kUGZaorKyUqJXW09MTSV9RUQFdXV2iwsXFnH/58iWlYW8FKCoqwtPTEzdv3iRtj4uLI0U+FCYlJQWmpqZEJEFBN/u1a9dI6b788kvU1NTgjz/+oDzf4qiurkZjYyNcXV2JbYqKinByciIiUr4KHR0dKCwsFBFZubq69um4kpCkDXdwcJA6QU+SNrzrPs+fP8fWrVvx5Zdf4vfff6dcGy5J4V5eXk7LOUwn/UHhLvic+vp6UsNfUVERrq6uvYqs2t7ejpcvX0pt/AjisvTUHtoTOjo6UFpaKtIodXR0lPjAUlRUJDZ9SUkJXr58KZKez+fj2bNnqK6uljqk8iaQNSqkQ5v6fMGCBVBTU4OpqSm0tLRw8uTJvudWCkpKSkS3rTDt7e0iAicBKioqInHW29rawGAwiKhmlZWVcHR0JC5KIyMjmJqaSjxmX9DT04OCgoLIWHd1dbVIeFYBKSkpWLlyJc6ePYu6ujqwWCw0NjZi69atRJohQ4YgMDAQ69atozzPkhBEy+w6hKGlpSUiqeoNAg9A1/k54uRXVCBNGy7t8xobG7tVjVtbW2PFihXYuHEjoQ3fv38/pdpwgcJdnG6djnOYTvqDwh0AMUTQdQhVR0enV4ryc+fOQU9Pj2QuFYbP5+PkyZNwcXGhdFJsc3OzWKGYOCmgADabLTY9j8cjBaRrbW3Ftm3b8Pnnn+PUqVOYNWsWbXOlZNADberzn376CTt37kROTg6++uorbN68GUePHpV4XHHq8xcvXkjsAqeKrj0sXVuP6enp8PX1xdSpUwF0mvQKCgooFYl1lydJ2wAQ8wkOHDiAGzduwNjYGN9++y1+/vlnfPLJJ9DQ0MCJEyewbt06WkNBJyUl4cyZM8T7LVu2AKBv+VVvwtX2BsF8DQHSGmK9/byeaMO/+uorWrThb/EiL4n0F4V7fHw8jhw5QrzfuXMngL6dw5cvX8bt27fx3XffSXQkHTt2DIWFhbRZKXt7/vckvbKyMrZs2YL29nbk5uYiLCwMenp6UiV2r5v+2sNAFbSpz42NjWFsbAwnJyfo6elhxIgR+OabbyQuxxGnPp87dy7ee++9HuWLy+WCx+OJPH0pKytLnKQk7mlNWVkZPB6PaOC0t7cjMTGR6L1obW2Fu7s7LeGea2tr0dHRIdIrYWBgIHGm/pYtW3Dv3j38/PPPADoNsS0tLbh+/Tp2794NQ0NDWFlZ4eLFi8Q+gtnL9fX18PLyomTM0svLi3Thv3jxAkBnj4XwE1lXLX1v0dTUBIPB6LWSu6d4eHiQulsF5eiqDe/u87o+CQPdq8YF2vCehu7tCXQp3F8H/UXhPnjwYNLTtuCcqq+vJ3l8GhsbezQBPCQkBJcuXcK3334r8eHm2LFjSElJwf79+yUO/74q6urqYDAYIr0SAv+LOLS0tMSmZzAYJN8Jg8Eg8iv4/uPi4mSNincIWtTnXRE8FYhTugoQpz4PCAjocd54PB7q6+vFqqolrQqora0Vm76urk7kSYbH46G1tRVycnIwMzNDWVlZj/PWU168eIGMjAySHRUAxo4dK3Eimpqamtg5H0Dnyf/s2TP4+flh6NChxCsqKgp37twh1LhUoKqqStJtm5qaQltbG0+ePCHSdHR0IDs7G/b29q/8OQoKCrCysiIdF+ic9d6X4wpQUVGBoaEh8RJow4UV4B0dHXj27BlsbW0lHkeSNlzaPi9evEBFRUWfGl1dESjcxenW6ZozQBX9ReGupqaGAQMGEC8LCwswmUySCfXFixd48uQJnJ2dpR4rODgY//77L/73v/+JPd/5fD6CgoJw9+5d7N27l5YYGgoKCjAzM8OzZ89I2589eyZxmMXS0lIkfU5ODszNzYnQ0ZIQN+dCxttLr3oqhNXnXW98AvW5jY0Nqqqq4OvrCw0NDWRmZuLzzz/HsGHDpI7rKSsri9jZejv0kZ2djSFDhqCurg61tbWwtbWFmpoaMSHLzc0NqqqqxA90Xl4e7O3t4eHhARaLBT09PdjY2JBWJ+jq6kJNTQ319fVQU1ODq6sr5OTkaFNV//bbbzhx4gQyMjJw//59Yo25wCq3a9cumJiYYM2aNQA6V0L8+uuvWLlyJeLi4mBsbIz9+/fjwYMHxCTUrnkVPLXRrduePHkywsPDYWxsDCMjI4SHh0NJSQn+/v5EumPHjoHJZBL65o6ODqLB1tHRgfr6ehQVFRE/MECn2OzYsWOwtraGnZ0d4uPjUVtbi3HjxtFSjnHjxiEqKgqGhoYwMjJCVFSUWG04k8nEnDlzAADjxo3DDz/8gOjoaHh4eODhw4fIysrC559/Tuxz6dIluLm5QVdXFxwOB5GRkWhra6NcG56ZmYlhw4ahtrYW1dXVcHBwgLq6OnGT9/T0hKqqKmnmvqDHUVFRkVC483g84twRrFoR/K2mpgYmk4mOjg6J4+p9RVjhLmhoREZGiq0LHR0dzJ07F0Cnufj7778XqYsvvviC2OfixYtwd3cn6iIiIoI2hbucnBwCAgJw6dIloqFx6dIlKCsrkya0//jjj9DT08OyZcsAdA55/PXXX/jss89gZGREzL9QUVEheqKCgoJw+/ZtfP3118R9C+hs2EizX/aWkSNH4vz58zAzM4OVlRXu3buH+vp64toWxJBZuHAhgM6l70lJSQgNDcWQIUNQWFiI+/fvE3PzgM4J6WZmZtDX1yceQFJTU4l6fFuQ9VRIh3L1eVZWFoKDg7Fp0ya0t7fD3Nwcc+bMwZdffklZpiVRUlICZWVluLq6QkVFBY2NjUSQHEBUVd3c3Izbt2/D09MT9vb2aG1tRXp6OunpXV5eHoMGDYKGhgY6OjpQXl6O5ORkoguTakJCQqCrq4svvvgCxsbGyMzMxHvvvYeSkhIAnT0pwqrvv//+GxoaGlizZg327duHxsZG3L59Gzt27KAlf71h2rRp4HK5OHv2LFpaWmBjY4PPP/+c1BXfVbddX1+Pr7/+mngfFRWFqKgoODk5EQbCIUOGEDrxhoYGmJmZYevWrZR38wqYPHkyXrx4gX/++YfQhm/atIk0dFZXVydRGx4aGipRG37ixAmSNnzbtm2Ua8MFCndBo7qhoQE3b96UqnAXjkworHC/cuUKsY9wmoEDB2LgwIGorKwUkR5RSX9QuAOd98v29nYEBQWhqakJjo6O2L17Nyl2SHV1NSnQUlRUFDo6OkRsogsWLMCiRYuINEBnz68wGzduJM156yuenp5oaWlBbGws2Gw2TExMsGrVKmI4h81mE5O1gc5zaNWqVQgNDUVSUhK0tbUxa9Yskrady+UiJCQEDQ0NUFRUhKGhIRYuXCiyPP5NIwt+JR1ZmO7XgCxM99vD2z6PoKfIwnS/PcjCdL89vI4w3VQuce0agK0/8FYLxWTIkCFDhoy3Cdnwh3RkjQoZMmTIkCGjh8gaFdJ5qxsV71pwHkn4+vq+6SxQAh0RK183Cgpv9SnfY/rDtUHXHJjXTW8CVr3N0DV/pL8ha1RIRzbjRIYMGTJkyJBBCZSrz4Wpra2Fu7s7ysrKUF9fT5vZU5jk5GTcvn0bHA4HRkZGmDFjhtTolywWCxEREaiqqoKWlhZGjRqFIUOGEP9PTU3FpUuXRPb79ttvaYv2OXPmTMyfPx96enooLCzEkSNH8N9//0lMr6ioiCVLlmDChAlgMpmoqanBX3/9RaqXESNGYPny5RgwYADKy8tx+vRpJCYm0pJ/Afb29nBxcSFWHKSlpUmNjWBoaAgvLy/o6OigpaUFWVlZpN4ROTk5DBw4EDY2NlBTUyOkcV29FlRiZ2cHR0dHqKqqorGxERkZGVJtqAYGBvDw8IC2tjZaW1uRnZ0t4vtwcHAgljtzuVyUlJTg8ePHtIq5bG1t4ejoCBUVFbDZbDx8+FBqOfT19eHh4QEtLS20trYiJyeHNKls1KhRMDQ0FNmvoqKC1vOKz+fj33//xfXr19Hc3Ax7e3usWbMGFhYWEvcpLi7GP//8g/z8fFRXV2PFihWYOXMmKU1rayv+/vtvpKSkoLGxEdbW1li1ahUlsU8klePKlSuIj49Hc3MzbG1tsXTpUqmK8tLSUgQHB6OwsBA1NTVYtGgRJk+eLJLuxo0bxJJOgXCPjlDXfD4fV69exe3bt4mVOIGBgd1q6B88eIArV67g+fPnMDQ0xNy5c+Ht7U38/+XLl7h69SqSk5OJgGDDhw/HjBkz3oqVF7KeCum8cqNCoD4/efIkiouLxV7UK1euhJubGy2BosTx6NEjhIeHY9asWbC0tERKSgpOnz6NzZs3E+vuhamrq8Pp06fh5+eH+fPno6ioCFevXoW6ujopbK+ysjI+++wz0r50NShGjx6NTz75BD///DOePHmCGTNmYP/+/Vi+fLnESIs7duwAk8nEDz/8gLKyMjCZTFJAGRcXF+zYsYNoSAwfPhw7duzA+vXradMKW1pawtvbGw8ePEB1dTXs7e0xZswYREREiNU7q6urY8yYMcjLy8Pdu3dhYGAAX19ftLW1Ectp3d3dYW1tjZSUFGIZ28iRI3H9+nVauqDNzc3h4eGB9PR0VFdXw87ODiNHjkRMTIzEMowcORIsFgv37t2DgYEBvLy80N7eTixTtrS0hJubG+7fv4+amhpoamoSMRYePnxIeRkAwMzMjChHTU0NbGxsMGLECMTExIjV0KupqWHEiBFgsVhISUmBvr4+UQ7BtXz37l3SDV5ZWRkTJkwg6oourly5grCwMKxfv56I77Bz504cPXpUJGqogPb2dhgbG2PYsGE4ffq02DS//fYbiouLsXHjRujq6uLWrVvYuXMnfv31V1qGBSIjIxEdHY3Vq1fD2NgYoaGhOHDgAL7//nuJ5eByuTA0NISfn5/EQIOCMPPLli2Dvb094uPj8cMPP9ASWTMqKgrXrl3DqlWrYGxsjLCwMPzwww/47rvvJJYhLy8PQUFBmDNnDry8vJCeno6jR4/iq6++IgLDRUZGIj4+HqtWrYKpqSkKCwtx6tQpqKqqUh6+/lV4Gxo2bzOUq88FBAUFoaGhgSS2opuEhAT4+vrCz88PRkZGmDlzJrS1tXHv3j2x6e/duwcdHR3MnDkTRkZG8PPzg4+PD+7cuUNKJycnB01NTdKLLt5//31ER0cjKioKxcXFOHLkCJ4/fy7yZCXA19cX7u7u2LZtG9LT01FVVYXs7GxS1MG5c+ciNTUV58+fR0lJCc6fP4/09PQeh0B/FZycnJCfn4/8/Hyw2WykpaWhpaUFDg4OYtPb29ujubkZaWlpYLPZyM/PB4vFIkUYtLa2xtOnT1FeXo6mpibk5uaioqKi2yiEr4qjoyMKCgrAYrHA4XCQkZGB1tZWiVExbW1t0dLSgoyMDHA4HLBYLBQUFJCeEvX09FBTU4Pi4mK0tLSgqqoKxcXFpHDNVOPg4ICCggIUFBSAw+Hg0aNHaGlp6bYcjx49AofDIfbtGmpa4Otpb2+HkZERXr58SVmEVnHw+XyEh4fj/fffh7+/PywtLbFhwwa0t7eLXLPC2NvbY9myZRgxYoTYOTXt7e1ITk7G0qVLMXDgQJiYmGDBggUwNDSU2Avb13LExMQgICAAvr6+MDc3x5o1a8DlckmB97piY2ODBQsWwN/fX+JDTXR0NEaNGoXRo0cTvRR6enqULwfn8/m4fv06ZsyYAR8fH5iZmeHDDz9Ee3u7xPstAFy/fh0DBw7E9OnTMWDAAEyfPh3Ozs64fv06kSY/Px+enp7w8PAgHi4GDhz41inQZYiHFvV5ZmYmdu/ejT/++OO1teoEkRi7dlc6ODhIXNNfXFws8iPn4OCA0tJSUmhYLpeL7777Dnv37sWZM2do63lRUFCAg4MDUlNTSdtTU1NJumdhhg4dipycHHzwwQe4ePEizp07h7Vr15IkQy4uLkhLS+vxMfuKJN12RUWFxKclAwMDsXpuPT09ortRXl5eJGQvXRp6BoMBJpNJRCUVUFlZKbEMenp6YtPr6uoSZaiurgaTySQaEerq6jAxMUF5eTnlZQA6G8TiylFVVSW1HF2dF5WVlWAymRK7fq2trSVqrKlCoAwXtnIKlOF96XHj8Xjg8XgiP9TKysoi4b2poLq6Go2NjXB1dSW2KSoqwsnJqU+ToTs6OlBYWCgiR3N1daV8krW0MkjT0Ofl5ZH2ATplbsL72NvbIzMzkzhni4uLkZubC3d3d0rL8KrI1OfSeaXhD0nq8/Hjx6O9vR0LFizADz/8AAsLix4H9+irpbSlpaXXOl4OhyNVx6ulpQUDAwO8//77MDY2JuRiQUFB2LhxI+Xdidra2pCXlxfpyu8qHhLGxMQEgwYNApfLxY4dO6CtrY0NGzZAU1MTP/zwA4DOUON1dXWk/erq6sQOCVGBNN22pG5RcYIrYQ19W1sbKioq4OTkhOfPn4PD4cDY2BhmZma0XJxKSkq9VoarqqqK/Hh3LUNJSQlUVFQwduxYyMnJgcFgIC8vj7ZhKEFddL22pJVDXF20t7eTyiEMk8mEtrY2Hjx4QG3muyCI0Nh1bpa2tnafPCaqqqpwdHTExYsXYW5uDm1tbSQkJODZs2cSBYh9QVCOrpGJtbS0+mQS5nA44PF4IqI0cUK1viJNQy+tDI2NjWL3Ec7ftGnTCAU6g8EAj8fD3LlzSXPd3iT9tTFAFZSrz7dt2wZnZ2dSTPeeIM5SOn/+fHzwwQe9Oo64Cpd2Ekj6n2C7paUlLC0tie2Wlpb45ZdfkJSU1CvhWW8Qp2OXFPiUwWCAz+dj3759RNjloKAg7Ny5Ez///DO4XK7Y/d7UhdGbAK5d85iamorBgwcTUfOamprAYrEojXBHNV3LYGBgAGdnZ6Snp6O2thYaGhrw9PSEi4sLLU/FAsR971Qow4HOXorGxkbK57Xcvn0bQUFBxHvh8O1d6ev5vHHjRvz2229YsWIFGAwGbG1tMXLkSJFJtq9CUlISzpw5Q7zfsmULAPquwb4o1SVx9+5dnDt3jni/adMmiZ/1KvkTJiUlBcnJyVizZg1MTU2JibaCCZsy3m4oV5/fvHkT//33Hy5fvkz8D+icTb59+3aRhoOAbdu2YfPmzaRt165d63G+1NTUJOp4u/ZGCNDU1JSo4xWOwS8Mg8GAmZmZ1Jnzr0pjYyNevnwp0iuho6Mj8YZdW1uLmpoakoq9qKgIDAYDBgYGKCsrQ11dncgxmUwmbevrBbrtrk/C0nTbPdXQ37lzh6Sh9/DwQFNTE+Vl4HK5vS5Da2trt2UYNGgQioqKiB68xsZGKCgowMfHh5ZGhbS6kGQNllYXXRup8vLysLCwELHGUoGfnx9peFLg22loaHglZbg0TExMsHfvXrS1taGlpQW6urr44YcfCIldX/Dy8iIZUYXLIZxvNpvdJ0OtpqYmGAxGrzXvPcHT05M0B0egoe/63XM4HKllENdr0nWfixcvYurUqUTPhLm5OWpraxEREfFWNCpkEzWlQ7n6PDg4GI8ePSL+d/LkSQCdkyg/+eQTicdWVlaGlpYW6dWbFRYKCgowNTUVGTvMzc0l9TQIY2FhITa9mZmZRB0vn89HRUVFny9ScQiU2sLLqwDA29ubNPFSmCdPnkBPT4/0I2BmZoaXL18SXcKZmZm9OmZfkabbltQYq66uFpu+trZWqobewsKClsmBPB4P9fX1Il4HIyMjiWWora0V+REyNjZGXV0dUQZ5eXmR8gje0/HkyufzUV9fL5KvVylHfX29SN7NzMzAYDBQXFxMbcbROSxhYmJCvMzNzcFkMkmrZATKcCcnJ0o+U0VFBbq6umhqakJGRgb8/Pz6fExVVVWSwt3U1BTa2tqkhpjAytmXJawKCgqwsrISaeA9efKkz0tju5ZBkoY+OztbqlLezs5O5L7z5MkT0j6CoTZhBD2ybwOyORXSoVx9/umnn5K2C25czs7OtMepGDFiBC5cuAAzMzNYWFjg/v37aGhoIFq80dHRYLPZhGZ7yJAhuHv3LsLDw+Hn54fi4mI8ePAACxYsII4ZGxsLCwsL6Ovro729HUlJSSgvL8esWbNoKcOlS5ewbds25OTkIDMzE9OnTye04QCwatUq6OvrY//+/QA6JV9LlizBF198gbNnz0JbWxtr1qxBTEwM8VQZEhKCw4cP44MPPkBSUhKGDRsGb29vrF+/npYyAJ0aen9/f6Inxc7ODmpqakQjzsPDA6qqqsRs99zcXDg6OsLLywt5eXnQ19eHra0tkpKSiGPq6ekROmdVVVXCcEjXsEFOTg4GDx6Muro61NTUELElBF3igwYNgpqaGlJSUgB0zlq3t7eHh4cH8vPzoa+vD2tra9Js+PLycjg6OqK+vh51dXXQ0NCAq6srysvLabtpPnv2DIMHD0Z9fT1qa2uJOB+C3hJXV1eoqqoScyLy8/NhZ2cHd3d3sFgswlIqbla/tbU1ysrKJA6zUYmcnBxmzJiBy5cvY8CAATAxMcHly5ehrKyMkSNHEukOHz4MPT09LFmyBEBnw0Ow1LWjowN1dXVgsVhEowUAMjIywOfzYWpqioqKCpw9exampqYYN24cLeWYPHkywsPDYWxsTFzfSkpKhDocAI4dOwYmk0ncrwST0QV/19fXo6ioCCoqKkQjcMqUKTh27Bisra1hZ2eH+Ph41NbWUl4OOTk5TJw4EeHh4URDIyIiAsrKyqS5D7///juYTCbef/99AMCECRPw3XffITIyEp6ensjIyEBmZia++uorYh8PDw+Eh4dDV1eXGP64du0aRowYQWkZZNAD5erz9PR0eHl5UZbB3uDu7o6WlhbExcWBzWbD2NgYy5cvJyYkcjgcko5XV1cXK1asQHh4OJKTk6GlpYWZM2eSZk+3tbUhJCQEHA4HKioqGDBgANauXUvSj1PJrVu3oKWlhcDAQOjq6qKwsBDbtm0jZuPr6uqSgg61tbXhs88+w7p16xAUFAQ2m41bt26R1uM/ffoUe/bswYoVK7B8+XKUl5djz549tE0OBDqHYJSUlDBo0CAi+NWtW7eIYRoVFRURDX18fDy8vb3h4OCA1tZWpKWlkeIeyMvLw93dHRoaGnjx4gXKy8tx9+5d2jT0JSUlUFZWxsCBA6GiooLGxkYkJCQQMSpUVVVJw2TNzc24c+cOPD09YWdnh9bWVmRkZJB6UgQNIMH30t7ejvLycqnBzfpKaWkplJWV4eLiQgS/klaOlpYWJCQkwMPDA7a2tmhra0NGRobIqicNDQ0YGBjg9u3btOW9K7Nnz0Z7ezuOHz+OpqYmODg4YNeuXaQJwNXV1aSnwLq6OtLQqkCBPnDgQOzduxdAZ939+eefqK2thaamJvz9/bFo0SLawrpPmzYNXC4XZ8+eRUtLC2xsbPD555+TytFV4V5fX0+aVxIVFYWoqCg4OTlh+/btADoflJqamnD16lU0NDTAzMwMW7dupSUk+tSpU8HlcvHHH38QAby2bt0qtQz29vb46KOPEBwcjJCQEBgaGuKjjz4iDa0sXrwYISEh+PPPP8Fms6Gjo4PRo0fTNoett8iGP6TzVqvPr169+qazQAm//PLLm84CJaxcufJNZ6HP9Bf3R3+4sXVdWviuIml12bsGncuBXxfCPT10Ibykua/QFfDuTdI/7rAyZMiQIUPGa6C/zoWginf/cUeGDBkyZMiQ8VbwVvdUdCemeVcQ51d4F+kP9SFYCveuI2nJ87uEtMiL7xJ0RHR9E0haKi2DTH8YeqSTt7pRIUOGDBkyZLxNyIY/pEOL+lzclx4UFIS1a9e+6sf1GD6fj5CQEJJSeNmyZT1SChcUFKCmpgaLFy8WqxSOjY1FVFQUGhoaCFkPVevjhZkzZw4WLVoEPT09FBQU4PDhw3j06JHE9IqKilixYgUmTZoEPT09PH/+HOfOnUNERASATk21QKusoKBASMXokCUJw+fzERERQaw0sLa2xoIFCzBgwACp+6WnpyMsLAzV1dUwMDBAQEAAPD09xaaNjo7G1atXMXbsWGLpHdXw+XxERUUhKSkJLS0tsLKywrx587otR0ZGBiIiIlBTUwN9fX3MmDGDNMkrNzcXN27cQElJCRobG7F69Wra/AZ8Ph+hoaEkTfWSJUu67X1KTU0laarnzJlDinmydetWsWGZx44dSyzppJKkpCTcunULHA4HRkZGCAgIkBpRNT8/H2FhYaiqqoKWlhZGjx6NoUOHEv//77//EBcXh5qaGsIjM2rUKJG4LlQj0IYLVkTZ2tpiyZIlUu9TQKc2PCQkhKQN9/HxIf7f2tqKkJAQQsxnaWmJRYsW0RJ1VnB9JyYmEtdFb65vwXXR9fq+ffs27ty5Q5xXJiYmmDZtWr+Z2NvfeeV+HIH6PDExUWzgmzNnzqCiooJ4LV26tE8Z7SkRERGIjo7G0qVLsXv3bujo6GD//v1ShyDa29thYGCA+fPnS4wGJ1AKz5w5E99++y0cHR3xww8/UB5Zc9y4cdi4cSPOnj2LpUuX4tGjRzh06JDUyH7ffvstfHx88N1332H+/PnYuXMnSaLGZrNx7tw5fPjhh1iyZAkiIyOxfft2QrlNF9euXcONGzfwwQcfYNu2bdDS0sLhw4eldrPm5+fjxIkTGDx4ML755hsMHjwYv//+u1hDYWFhIRISErq9EfeV2NhY3Lx5E/PmzcPnn38OLS0t/Pbbb1LLwWKxcPr0afj5+WHbtm3w8/PDqVOnSOXgcrkwMzPDvHnzaM0/8H+a6kWLFhGOmIMHD0q9LgSaan9/f+zevRv+/v4ICgoiha7esWMHDh8+TLwEVmJfX1/Ky/Dw4UOEhYVh/Pjx2LRpE2xsbHDy5Emp0WZPnjwJGxsbbNq0CePGjUNoaCgeP35MpFFVVcW4ceOwbt06bNmyBb6+vrhw4QJycnIoz78wUVFRiImJwZIlS7Br1y5oa2vjhx9+6LY+jh49iqFDh2LPnj0YOnQojh49SqqP06dP48mTJ1i9ejX27t0LV1dXfP/99yLuHyq4fv064uLi8MEHH+DLL7+EtrY2fv75526vi5MnT2LIkCH4+uuvMWTIEJw4cYJ0XTCZTMyaNQvbtm3Dtm3b4OjoiKCgINqke72FwWBQ9uqP0KY+19HRgbGxMfGSJJKiEmlK4bt370rcz9bWFgsXLuxWKTx69GiMGTMGpqamWLJkCS1K4QULFiA8PBzh4eEoKirC4cOH8fz5c8yZM0ds+iFDhsDT0xNbtmzBgwcPUFlZiczMTFLcg4yMDNy+fRtFRUUoKyvDxYsXkZ+fT6v1j8/nIy4uDlOmTIGXlxdMTU2xbNkycLlc3L9/X+J+cXFxcHZ2xpQpU2BsbIwpU6bAyclJ5Htua2vDqVOnsGTJElrnF/D5fMTHx2PSpEnw8PDAgAEDsGTJEnC5XKkCrfj4eDg5OWHSpEkwNjbGpEmT4OjoiPj4eCLNwIEDRXov6CpDbGwspk+fTmiqV61a1StNtYmJCaGpjo2NJdJoaWlBW1ubeD169AiGhoYkTTpV3L59G35+fhg8eDDRS6GjoyNRF56cnAwmk4mAgAAYGRlh8ODB8PX1JcXVsLOzw6BBg2BkZAR9fX2MGDECJiYmtGq2+Xw+rl27hpkzZ5K04VwuV2p9XLt2jThnBgwYgBkzZsDFxYXQGXC5XKSmpmL+/PlwcnKCkZERZs+eDQMDA9y8eZPyMgiub09PT5iammLp0qU9vr4nT54MY2NjTJ48WeT6dnNzI+rEyMgIs2bNgrKy8lujPpdF1JQOLepzAPj000+hr68PX19fHDt2DDwej5IMS0Og4xUOXkWVUrigoECk+41qpbCCggIcHR1FLsqUlBQRnbGA4cOHIzs7G4sWLUJYWBguXLiAdevWQVlZWeLn+Pj4wMLCAhkZGZTlvSs1NTVgs9lwcXEhtikqKsLBwUGqpInFYpH2ATp/fLvuc/78eQwaNAjOzs7UZrwLtbW1YLPZpM9RVFSEnZ2d1JtcQUGBSN5cXFx6bO2lEkmaakdHR6mTJfPz8zFw4EDSNldXV4n7dHR0IDk5GSNGjKD8himIJinsAgEABwcHFBYWit2nqKhIJL2jo6NERTufz0dubi6eP39Oq6ROWn1Iu5+I04YL18fLly/FKtwVFRUpV58Lru+u14W9vb3Uc5zFYvXquuDxeHjw4AG4XC6sra2pybwMWqFcfQ4Ae/bswbhx46Cqqoq4uDhs2bIFNTU1Ui2D4tTnXC4XSkpKPc6XJKWwtrZ2n4YpBEphcccVjtDZV3R0dKCgoCDSVSlNfW5qago3NzdwuVyiC/Kzzz6DlpYWES0QANTV1REWFgYlJSW8fPkSBw8epFVVzWazAYiqkTU1NaV2xYqTH2lpaRHHAzrHlYuLi0mhfelC8LmampoieequHF33ESewex1I0lR3d130RFMtTHp6OlpaWjBs2LA+5liU5uZm8Hi8Xn2nHA5HbHoej4fm5maibK2trdizZw86OjrAYDAwZ84ckcYIlfRFGy7uHiQ4nqqqKuzs7BAWFka4OZKTk8FisSgRowkj6fruyXXR3fUNAGVlZfj+++/x4sULKCsrY82aNd3O1Xhd9NdhC6qgXH0OkBXFgq7d3bt3S21UiFOfr1q1CqtXr5a4T1JSEikctWA8tytUBQ3trVb9VXkVPfjOnTuJENg///wz9u3bh4MHDxINtZaWFixduhSqqqrw8fHB+vXrUVZWRllvRUpKCv7++2/ivcABQ8X3I/x91NXV4cKFC9iwYUOvhHM95f79+zh//jzx/uOPPwZAj+KZLpKTk0ma6o0bN0rMT3f105v6u3PnDgYNGkSExX8d9PY7FZdeWVkZmzdvRnt7O3JzcxEWFgZdXV2pYqzecPfuXdIQsSBkOBX3k651uHr1apw6dQobN24Eg8GApaUlhgwZQppj9SqkpKTgn3/+Id4L5JB0XRdGRkbYvn07WltbkZ6ejnPnzmHz5s1vRcOivw5bUAXl6nNxN5QhQ4aAzWajqqpKYotZnPq8Ox+Cl5eXRB2vcD6oUgp37ZUQ9+TQFxoaGtDR0QE9PT3SdiaTKbH1X1tbi+rqapL6vLCwkFCfC7wTfD6f+Ds3NxdWVlYIDAykrFHh7u5O6p4Urgvh74jD4Ug1vIp7ahHep7i4GBwOB/v27SP+z+PxkJubi1u3buHIkSN9epJwc3ODlZWVSDm6nkOvUo6mpiaRJ2c68PDwIHXfS9JUd6fEFqeplnQt1dTUIDMzU0QoSBXq6upgMBgivRLSvlNxvRhNTU1gMBgk7wyDwSDcGKampnj+/Dlu3rxJWaOiqzZc4Kqhqj6E9zEyMsJXX32F9vZ2tLa2QkdHB0eOHOlzLA0qr29x6vOu+ygoKBCOI0tLSxQVFSE+Ph6LFi3qUzlk0A/l6nNxZGRkQEVFRaqlVJz6vLuhD1VVVdJkUDqVwtbW1rQohYXp6OhATk6OyMx5Pz8/iQ2sx48fQ19fnzQR1sLCgqQ+F4ecnFyvhpa6Q0VFBYaGhsTLxMQEWlpayMrKItII1O7CN9iu2NjYkPYBOiVcgn2cnJywY8cOfP3118TL0tISfn5++Prrr/vcNSmpHMLytY6ODuTl5Ukd47W2thYpR1ZWFq1j9QJ6qqnOycmR+sNpa2sroql++vSp2H0SExOhpaVF2+RfBQUFmJqa4tmzZ6Ttz549IzUChbG0tBSb3tzcHPLy8lI/j8ogaT1Vn+fk5Ei9n/REGy5AWVkZOjo6aG5uxpMnTyQuye4pPb2+c3NzpZ7j4q7vnlwXfD6fNnFgb5FN1JQO5epzS0tLVFZWwt/fH6qqqoiPj8f27duxevVqqZMHqUCgFA4LC4ORkRGMjY2JeQTCa9O7UwrX1dWhqKgIysrKMDY2BtCpFA4KCoKNjQ2tSuHz589j586dyM7Oxn///YdZs2bByMgIV65cAQB89NFHMDAwwO7duwF0ztBfvnw5vv76a5w4cQI6Ojr49NNPERERQQx9BAYGIisrC2VlZVBUVIS/vz+mTJmC77//ntK8CyMnJ4dx48YhOjqauBFFR0dDSUkJfn5+RLozZ85AR0cHs2fPBtC5pPbgwYOIiYmBh4cHHj58iKysLHz++ecAOm9uXWMrKCsrQ11dnZaIn3JychgzZgyuXbsGAwMDGBoa4tq1a1BSUiI1/s6dOwcdHR3CpDhmzBj89NNPuH79Otzc3PD48WNkZ2eTeuPa2tpIDb/a2lqUlJRAXV1d4hyaVy3DhAkTEBERIVVTLTh/hDXV+/fvR2RkJLy8vJCeno7MzExs27aNdHwej4fExEQMGzas2x/rvjBq1CicP38e5ubmsLS0xL1799DQ0ECUISoqCo2NjViwYAGATrlUUlISwsLCMHjwYBQVFeH+/fukp924uDiYm5tDT08PL1++RFZWFlJTUzF37lzayiEnJ4dJkyYR9WFsbEyoz4Xr4/jx42AymcSS44kTJ2Lfvn0i2nCBoRTo7N3l8/kwMTFBVVUVLly4AGNjY8q14YLrOyYmhri+Y2Jiur2+x44dix9//BHXrl2Du7s7Hj16hKysLHz22WfEPgKDLJPJRHt7Ox48eIBnz55h3bp1lJbhVZHNqZAO5erz//77D5cuXcLmzZvB4/FgY2OD3bt3E2NwdDN9+nSSUtjW1hZffPEF6Um+pqZGRCksfGEKK4UF80CGDBkCDoeDK1euEErhzz77jHKlcFxcHLS1tbFixQro6emBxWJhy5YtqKysBADo6emRhpBaW1uxYcMGbN68GWfOnEFjYyPi4uLw+++/E2lUVFTw2WefwdDQEO3t7SgqKsKuXbsoXw7blUmTJuHFixf4559/iOBXGzZsgIqKCpGmrq6OVBe2trZYtWoVQkNDERYWBgMDA3z44YdvdOb3hAkT8OLFC1y4cIEI8vPpp5+SylFfX08qh42NDZYvX46IiAhERERAX18fK1euJJWjuLgYP//8M/E+ODgYADB48GAEBgZSWoapU6fixYsX+PPPP4lgS1u2bOlWU7127VqEhITgypUrMDQ0xNq1a0V6mjIzM1FbW0v5D1dXPDw80NzcjNjYWLDZbBgbG2PlypVEA4zNZpNiVujp6WHVqlUICwtDUlIStLS0EBAQADc3NyINl8tFSEgIGhoaoKioCENDQyxcuJD2Zb7C2nCB+vyzzz4j1UddXR3pB8ze3h4ff/wxgoODERwcDENDQ3z88cek+mhpacGlS5dQX18PdXV1+Pj44L333qPFzjtx4kRwuVycP3+euL7Xr1/f7fW9cuVKhIWFSby+2Ww2zpw5AzabDVVVVZiammLdunUiq8LeFG+yh+Ho0aP44YcfUFFRgYEDB+Lw4cNSr7v29nbs3r0bf/31FyorK2FmZobt27djxYoVtOXxrVaf07k64XWyfv36N50FSvjuu+/edBb6jMz98fYgbaXDu0R/cX/0B0fRmDFjaP+MkSNHUnasO3fu9DjthQsXsGTJEhw9ehTDhg3D8ePHcfLkSWRmZsLCwkLsPgEBAaiqqsK3334LOzs7PH/+HB0dHaSee6qRuT9kyJAhQ4aMHvKmhj8OHTqElStXYtWqVQCAw4cP49q1awgKChL7wBcTE4Pbt2+DxWIRvXmS5h9RiWxwSIYMGTJkyOghVE7UbG9vB5vNJr26xmsCOofp0tLSMHHiRNL2iRMnSowWHRYWBh8fH3z//fcwNTWFg4MDtm7dSnuP1FvdU9HS0vKms0AJx44de9NZoIS3ZaJUX+gPQzj9BeFl0O8yb8uqhL7SX8rxLiEuPtPOnTuxa9cu0jaB8K5rSAYjIyNivl1XWCwWEhMToaKigitXrqCmpgYff/wx6urqSPGdqOaVGxWVlZXYu3cvIiMjUVZWBkNDQ3h4eGDjxo0YN24cfv/9d/zzzz9IT08Hh8NBfX291CWlVMHn8xEeHk4yYy5cuLDboClpaWkkM+asWbOkmjGvXLmCcePG0WrGvHTpEuLi4tDU1AR7e3usXLkS5ubmEvcpKSnBhQsXUFBQgOrqaixduhTTpk2TmP7KlSs4f/48pk6dimXLllFehlmzZmHBggXQ1dVFYWEhfv31V5LMqSuKiopYunQpJk6cCF1dXVRXV+PPP/9EVFQUgM6uu5UrV8LBwQEmJib49ddfcenSJcrz3RVhw6dgUt3ixYt7bPgUnFNdDZ9A5wTPS5cu4b///sOLFy9gZGSE5cuXU95N2V8spXZ2dnBycoKqqioaGxuRkZEhdem0gYEBPD09oa2tjdbWVmRlZYmEfHdwcICdnR3U1NTA5XJRUlKCR48e0aYWSE5ORkJCAjgcDgwNDTF9+nSpE5FZLBYiIyPx/PlzaGpqYtSoUSIywNbWVly/fh1Pnz5Fa2srmEwmpk6dSotFWYCdnR0cHR1JdSEtQquBgQE8PDyIusjOzhZbF7a2tqS6ePz48WvRPPQUKidqiovPJG2VZG8C2PF4PMjJyeHvv/8mFlccOnQI7733Ho4cOUKbj+uVGhWFhYUYNmwYdHR08P3338PNzQ0vXrzAtWvX8MknnyA7OxstLS2YPHkyJk+eLLIEjU4EZsxly5bByMgIkZGR+Omnn7Bnzx7SrGRhBGbMgIAAYhnj8ePH8fnnn4usny4sLMSdO3doN2OGhoYiMjISH3/8MUxMTBASEoJvv/0Whw8flngytLe3w8jICP7+/qSIiuLIy8vDjRs3YGlpSUf2MXbsWKxbtw6HDh3CkydPMHPmTHz//fcIDAzE8+fPxe7zv//9D0wmEwcOHEBZWRmYTCZpiaKKigrKy8sRHx//WntNoqOjcf36daxcuZJYjnnw4EHs27dPYl3k5eXh2LFjmD17NrEc89ixY/jyyy+J2frNzc3Yt28fnJycsGnTJmhpaeH58+e0TMIUWEpXrlxJLGHsSRmCgoIwe/ZseHt7Iy0tDUFBQdi2bRtRhh07dpAiIpaWluLgwYO0WErNzc3h6emJtLQ01NTUwNbWFiNHjkR0dLTYXk11dXWMGjUK+fn5uHfvHvT19eHt7Y329nYiEJylpSXc3d1x//591NTUQFNTk/jBpsON8/jxY0RGRiIgIACWlpZISUnB2bNnsWnTJrEPXXV1dTh79ix8fX0xf/58FBUVITQ0FOrq6oQHpKOjA6dOnYKGhgYWLlxIBMmicwm/ubk5PDw8kJ6ejurqatjZ2WHkyJGIiYmRWBcjR44Ei8XCvXv3YGBgAC8vL5G6cHNzE1sXDx8+pK0svYXKORXKyso9qid9fX3Iy8uL9Eo8f/5cYkBJExMTIiaKAGdnZyIQIpUxloR5pW/n448/hpycHO7fv4/33nsPDg4OGDhwIDZv3kxY9jZu3Igvv/yStO6abvh8Pm7cuIGpU6cSZszly5eDy+UiJSVF4n7CZkwTExNMmTIFzs7OYs2YJ0+efC1mzKioKMyePRuDBw+GhYUFPvnkE7S3tyMxMVHifnZ2dliyZAmGDRsmNYR1W1sbfv31V6xZs4YUWZBK5s2bh8jISERGRqKoqAi//vorqqurMWvWLLHp/fz84O7ujs8//xxpaWmorKxEVlYWKUBQdnY2goKCcPPmTXC5XFry3RVhw6e3tzfMzMywcuXKbs+p2NhYuLi4YNq0aTAxMcG0adNEDJ9RUVHQ1dXFypUrYWNjA319fbi4uBCRBOkow7tsKXVycgKLxQKLxQKbzUZGRgZaWlokBvCys7NDc3MzMjIywGazwWKxUFBQQHp619PTQ01NDYqKitDc3IzKykoUFRVRGidEmISEBPj4+MDX1xeGhoaYMWMGtLW1JdZDSkoKdHR0MGPGDBgaGsLX1xfe3t6kVQNpaWlobW3FkiVLYGVlBSaTCSsrK5iYmNBSBqBTzFZQUAAWiwUOh4OMjAy0trZKDGxna2uLlpYWZGRkgMPhEHUhfJ4I6qK4uBgtLS2oqqpCcXExbXXxLqGkpARvb2/StQd03mckreQYNmwYysvL0dTURGx79uwZGAwGrQ/FvW5U1NXVISYmBp988onYH6TXMcQhCWlmTGnmvPz8fJE10C4uLhLNmHSvl37+/DkaGhpI0QkVFRXh4uKCnJycPh//5MmT8PT0JK3XpxIFBQU4ODiILAl+8OCBiGVRwLBhw5CTk4OFCxciODgYf//9Nz7++GNKo36+CgKjpLCts6eGT3FGSeFz6uHDh7CyssLRo0exYcMG7Nq1i6TlproM77KllMFggMlkijypVVZWSowVo6enJ5K+oqICurq6RP5qamrAZDKJHy51dXWYmJigvLyc0vwDnd9PeXm5yBOivb09iouLxe5TXFwskt7BwQFlZWWEaVWwpDA0NBR79+7F4cOHER8fT9uQAVV1UVlZSaqL6urq11YXfeFNRdTcvHkzTp48idOnTyMrKwubNm1CcXEx1q5dC6BzKEU4vs3ChQuhp6eH5cuXIzMzE3fu3MFnn32GFStW0Db0AbzC8EdeXh74fD6tY3WvijRznrQ18T0x592/fx9FRUWkIFl0QZdtFeiUsBUUFNA6YVFbWxsKCgqkQERAZ4NU0lPHgAEDMGjQIHC5XHz99dfQ1tbGpk2boKmpiQMHDtCW1+541XOqJ4bP6upqxMfHY9KkSZg2bRoKCgrwzz//QEFBgVLTZ3+wlCopKYHBYKCtrY20vb29XeKwpoqKishM+ra2NjAYDCgrK6OtrQ3FxcVQVlbGuHHjICcnBwaDgdzcXJFQ0lTQ0tICHo8HDQ0N0nYNDQ2pplVx6YVNq/X19WCxWPDw8MCyZctQU1OD0NBQ8Hg8yiP+ApLroq2tTWJdqKqqijQqutZFSUkJVFRUMHbsWKIu8vLySCHy3wbe1JLS+fPno7a2Frt370ZFRQVcXV0RFRVFDGFXVFSQGqcaGhqIjY3FunXr4OPjAz09PcybNw/ffvstrfnsdaNCMH5K9ZPIq6jPU1JS8NdffxHvJcmM+mpjFJgxN27cSIsZMyEhgRQBUzAHhWrLZU1NDc6ePYvt27e/lh6ArvmVk5OTWAbBhbpnzx5iVcCRI0ewe/du/PTTT69tuCM5ORl//PEH8V6S4VPSNml0LTufz4eVlRUREtrS0hJlZWW4detWn36Y/3+ylHaHuHNQGENDQ7i4uCAtLQ21tbXQ0NCAl5cX2traRDwbdCLte5Z0HxBs5/F4UFdXx+zZs8FgMGBqago2m42EhARaGhVU0bVcBgYGcHZ2Rnp6OlEXnp6ecHFxQWZm5hvK5dvFxx9/TJiTuyJswhXg5OQkMmRCN71uVNjb20NOTg5ZWVkSx8dfBXFLa5YuXYrly5dL3EeSOY/NZpOGYV7FnCfce1FUVAQOh4O9e/cS/xeYMePj43H06NE+tV59fHxIXZyCpV0NDQ2U2lZZLBYaGxvx5ZdfEtt4PB6ysrIQExODf/75h5JWeGNjIzo6OkR6JZhMpkjvhQBxttWioiIwGAwYGhoSk7nohkrDpzjbqnD96ejoiKxKGjBgANLS0vpShH5pKeVyueDxeCJPwoKnXHGIe3JWVlYGj8cjHmAGDRqEwsJCYni0sbERCgoK8PX1pbxRoaamBgaDQRrjBjrNqV17IwSIM602NzeDwWAQ87q0tLTAYDBI166hoSE4HA46OjooD9EtqS5UVFQk1kVra2uP6qKoqEikLnx8fN6qRkV/FYFRRa/PNl1dXUyaNAlHjhzB+vXrReZVNDQ0vNK8CnFLa6RNhAM6T2LhE5XP50NLS4sUtlRgxpwzZ47E49ja2iIrKwsTJkwgtgmbMZ2dnbFz507SPmfPnoWxsTEmT57c5x9iVVVV0hgXn8+Hjo4OHj9+TDSaOjo6kJmZ2Sf176BBg3Dw4EHStqCgIAwYMAABAQGUdesJvnMfHx8kJCQQ2318fCRONP3vv/8wevRoqKqqEsFZzM3N8fLlS4mrRehAXF1oa2sjMzOT6GYUGCUF4i1xCAyfwsFqnjx5QprIZmdnJ3acWU9Pj5YyPH369JXKMGnSJGLbm7KU8ng81NfXw9jYmJD/ARB5L0xtba1Io83Y2Bh1dXXE0744AZpwTwCVFgMFBQUMGDAAubm5pLkqeXl5cHZ2FruPhYWFSPd/bm4uTE1NibxbWlri4cOH4PF4xDUsWD1Bh/NDUl0YGRn1uS7E9eYB1NdFX5A1KqTzSr8iR48excuXL+Hn54fg4GBiDPKXX36Bv78/gM6b48OHD4lJXf/99x8ePnyIuro6scd8FfV5V+Tk5DB+/HhER0cjIyMDZWVlOHv2LJSUlEjruk+fPo2QkBDi/bhx45CZmYmYmBhUVFQgJiYGWVlZRNehwIwp/FJWVoaGhgZtZsypU6fiypUruH//PoqLi3HkyBEoKytj+PDhRLrffvsN//zzD/G+o6MDhYWFKCwsJGyrhYWFxA+XqqoqLCwsSC9lZWVoampKjB3/qly8eBHTp0/H1KlTYWlpiU8//RSGhoYIDQ0FAKxevRpfffUVkf7GjRtgs9n48ssviWV+H330EaKiooihDwUFBdjZ2cHOzg6KiorQ19eHnZ0dLXUgQNjwmZaWhtLSUpw6dUrknDpx4gQuX75MvJ8wYQKePn2KqKgoVFRUICoqSqThOnHiRLBYLERERKCqqgr37t3D7du3MXbsWNrLcPLkSbGWUuG4H4IyREZGoqKiApGRkcjMzCSVAXh9ltLs7GzY2NjA2toaWlpa8PT0hJqaGnGPcXNzI9VJXl4e1NXV4eHhAS0tLVhbW8PGxob0I11eXg47OztYWFhAXV0dRkZGGDRoEMrLy2n5ERsxYgRSU1ORmpqK58+fIyIiAg0NDUS+Y2JicPHiRSL94MGDUV9fj4iICDx//pzYV9g/MXjwYLS0tCAiIgLV1dXIzs7GrVu3iHsxHeTk5MDa2hrW1tbQ1NSEh4cH1NTUiInIgwYNItVFfn4+UReamprEvsITzwV1YW5uTtSFq6srbXXxqgh6hah49UdeqRlrbW2N9PR07N27F1u2bEFFRQUMDAzg7e2NoKAgAJ1RJIWHMwQXwZkzZ2gJtCRg0qRJ4HK5+Pvvv4ngVxs3buzWnPfhhx/i6tWrCA0NhYGBAVavXi0So+J1EhAQAC6Xi5MnT6K5uRl2dnbYvn27VNtqXV0doQgHgPDwcISHh8PFxUUkQhvd3Lx5E1paWli6dCn09PRQUFCAL774AlVVVQDE21Y3b96MDRs24MSJE2Cz2YiPj8eJEyeINPr6+qRIcAsWLMCCBQuQkZGBDRs20FaWKVOmgMvl4q+//iICR3U1fHY1StrZ2XVr+LS2tsYnn3yC4OBgwti4YMECWn4M+oOltKSkBMrKynB1dYWKigoaGxtx584dIi6Cqqoqqee0ubkZt2/fhqenJ+zt7dHa2or09HTSUNrTp0/B5/MxaNAgqKqqor29HeXl5VKDtPUFNzc3NDc3Iy4uDhwOB0ZGRli2bBkxzMnhcIiJ2kBnz/CyZcsQGRmJe/fuQUtLCzNmzCCt5NHR0cGKFSsQGRmJX375BVpaWhg6dChGjRpFSxmA/6uLgQMHEnUhCDgIdNaF8LL75uZm3LlzB56enrCzs0NraysyMjJIdSEY4uhaF//99x9t5ZBBPW+1pZSO5XVvgje5zJZKZGG63x76QxespGWU7xpvetkzVfSHMN10RTgWZvr06ZQdKyIigrJjvS281e4PGTJkyJAh422ivw5bUIXs25EhQ4YMGTJkUMJb3VMhGH9/15E0OfVdoz+Uo7+YbyUFS3qXkOQseNd4Xcud6Ybq8PD9lf4w9Egnb3WjQoYMGTJkyHibkA1/SIcW9bmnpyd27tyJ69evo6SkBPr6+pg1axb27NnTp+BNPcHW1pak43348GG3Ol53d3dCx5uTk0PyM4wePVpsC768vFyq3KsvJCcn486dO8Ts8J6qkauqqqClpYWRI0eSlgqmpqaSljsK2LNnDy0RQgXMnz8fy5cvh4GBAfLy8nDgwAGkp6dLTK+oqIiPPvoI06dPh76+PqqqqvD777/jypUrADqXlK5atQoBAQEwNDREYWEhDh06hKSkJNrKAPyf4C0pKQmtra2wtLTE/PnzuxU2ZWRkIDIyEjU1NdDX18eMGTNE4jjcuXMHcXFxaGxshImJCebOnStRkNUX+otum8/nIyIiAomJiWhpaYGVlRUWLFggEgOhK+np6QgLCyPqIiAgAJ6ensT/Y2JikJGRgcrKSigpKcHGxgazZ8+GsbEx5WUQCBhVVVXR0NBALC8Vh6qqKry9vaGrqwstLS1kZ2cjNTWVlEZbWxvu7u7Q09ODhoYGHjx48FpCWyckJCAuLg5sNhvGxsaYO3euRKEY0Blf48qVK6isrIS2tjbGjRtHWiIvWHpdUlKCuro6zJ49G2PGjKG9HDKohRb1+eXLl1FeXo6DBw/CxcUFRUVFWLt2LcrLy8X+uFGFsI5XoEYeMWIErl27JlHHO2LECLBYLKSkpEBfX58I0SsI4nL37l1Sy1RJSQkTJ06krcvz0aNHiIiIQEBAAKysrJCSkoIzZ85g8+bNEtXIZ86cgZ+fH+bPn4/CwkJCjTxo0CAinbKyMrZu3Ural84GxeTJk/Hll1/i22+/RUZGBt5//30cO3YMM2fOFAn4JODHH3+Enp4eduzYQdgJhYP3rFu3DtOnT8euXbtQUFCAYcOG4eeff8bixYtpvYneuHED8fHxWLx4MQwNDRETE4Nff/0VO3bskOg6YLFYOHPmDKZNmwZ3d3c8evQIp06dwubNm2FlZQWg0y4ZHByM+fPnw8bGBomJiTh69Ci+/vprSs2M/UW3DXSaU+Pi4rB06VIYGhoiOjoaP//8M/73v/9JrYuTJ09i5syZ8PDwwMOHD3HixAl89tlnRMPq2bNnGDVqFKysrMDj8RAaGopffvkFO3fupLRMlpaW8PHxwf379/H8+XM4ODhg7NixCAsLE3uPEjg2njx5IjFAloKCApqamlBcXAxvb2/K8iqN9PR0hISE4P3334eNjQ2SkpIQFBSEr776Suy5W1tbi+PHj8Pf3x+BgYFgsVi4dOkSNDQ04OHhAaAzUqeenh48PDyIB4m3Ednwh3RoUZ+7uroiODgYM2bMgK2tLcaOHYu9e/ciPDycCBlMBw4ODigoKEBBQQE4HA4ePnzYIx3vw4cPweFwUFBQgMLCQpKOl8vloq2tjXgZGRnh5cuXKCkpoaUMiYmJ8PHxgZ+f3yupkf38/EQiWQKdF4KmpibpRSeBgYEICQlBcHAwWCwWDhw4gMrKSnzwwQdi0w8bNgw+Pj746KOPcO/ePZSXl+PJkyd4+PAhkWbGjBk4ceIEEhISUFpaigsXLiApKYnWuCd8Pp+Qfnl4eGDAgAFYsmQJXrx4IfLEKMytW7fg5OSESZMmwdjYGJMmTYKjoyPi4+OJNDdv3oS/vz+GDh0KY2NjvPfee2AymSJ111f6i26bz+cjLi4OU6ZMgaenJ0xNTbF06VJwuVzcv39f4n5xcXFwdnbG5MmTiSi4Tk5OiIuLI9KsX78eQ4cOxYABA2BmZobAwEDU1dVRvuzVxcUFeXl5yMvLA5vNRmpqKlpaWiSq4pubm5GamgoWiyXRf1NbW4v09HQUFhbSZibtSnx8PIYMGUKcu3PnzgWTyZTYe5uYmAgmk4m5c+fC2NgYQ4cOxZAhQ3Dz5k0ijaWlJWbNmgVvb29aIoFSxZuylL4rvDb1ucB4SNfJItDxdp3cKS3scU90vF2xtrZGcXExoR2mko6ODpSVlYlVIxcVFYndp6ioSGz60tJSUh65XC7279+Pffv24ezZsxLD6VKBgoICXFxccPfuXdL2u3fvSgzjPGbMGDx9+hQrVqxAXFwcIiIisHXrVtJTopKSksiNtb29ndSNTTW1tbVgs9mkLn1FRUXY2dkRjgJxFBQUiAwDODs7E/t0dHSgpKRE5OnT2dkZBQUFlOW/v+i2gc5gb2w2m/SdKSoqwt7eXmpdsFgske/ZxcVF6j6CUPHCAZz6CoPBgK6uLioqKkjby8vLYWBgQNnn0I3g3O16fjs5OUk8dwsLC8Wmp+teKuPN0etGxauoz2tra7Fnzx6sWbOmtx/XY+hQI3dFV1cXOjo6lN70hRGokbv2IoiTCgloamoSm16gRgY6Z3W///77CAwMxIIFC6CgoIBjx471WaMuCSaTCQUFBRE1eG1tLfT19cXuY2ZmBi8vL9jb22PDhg04cOAAJkyYgK+//ppIk5SUhMDAQFhYWEBOTg7+/v4YM2YMrTdkgRRM3HfcVRjWdT9p9djU1CSxrqUdt7fQodsGgPr6ejx58gR8Ph/Lli3DmDFjkJCQQOqJoRppGvru6qI3+/D5fFy+fJnyEPDKysq9Voa/jTQ3N/f6PiXpeuDxeCKCtbcdWU+FdGhXn7PZbEybNg0uLi4iUi5hxKnPX7x4Qeu4P9A7nbi1tTUaGhpe+9LKniiqu6YH/q+OBJ4PAZaWlvj1119x9+5dzJw5k9rMismHgO7U53w+H1988QVxk/nhhx9w6NAhfPvtt2hvb8f+/fuxa9cuhIeHg8/no6SkBFevXqXUlvvgwQOcP3+eeP/RRx8Ree8KldpwAb2t677wtuu2U1JSSG6bTz75RGrepNGbff7991+Ulpbis88+6012e8xbHMS4V7xKPfTkOG8771p+Xze0qs85HA4mT54MDQ0NXLlyRWoDQZz6/L333pNqURSGKjWyiooKSccrQF5eHubm5pTrkIURqJG7tvalqZHFPXE2NTWR1MhdYTAYMDMzo62nor6+Hh0dHSK9Erq6uiK9FwKqq6vx/Plz0lMLi8UCg8GAkZERiouLUV9fjw0bNkBJSQk6Ojp4/vw5Nm3aROlQzqBBg4iJlMD/acO7Kr85HI7UeSninoSF99HQ0JBY11TOd3mXddvu7u6kFSrCCveudSFN4a6lpSWicJe0z7///ovHjx9jy5YthI+DKtrb28Hj8Ui+FUC6MvxtRF1dHQwGQ+T8lnbuamlpiZxTHA4HDAZD7DD624ysUSGdXg9/CKvPBV2hwghkOGw2GxMnToSSkhLCwsK67d7btm0bGhsbSa/ePIEKdLxdA+oYGRlJ/CGrra0Vm15YxyvA3Nwc8vLyEuc2UIGCggJMTU0J66KAvLw8QlndFUtLS5H0ubm5MDMzk2iM5PP5qKiooG2ypkDT3lWM5e/vj0ePHondJyMjAwYGBqQbrqWlJV6+fCkyT4bL5eL58+dQUFDAhAkTKO1yV1FRgYGBAfEyNjYmlvIJly8vL0+qcM7a2lpkRYrAsgl01rW5ubnYNNKWevYWYd22MHl5eRLNtBYWFmLPqa667draWtIcCqp12yoqKjA0NCReJiYm0NLSQlZWFpGmo6MDubm5UuvCxsaGtA8AZGVlkfbh8/k4f/48MjIysHHjRonDdH2Bx+Ohrq5OZDKriYkJqqurKf88uhCcu8KGUUD6uWtlZSX2XLewsKDVbCvj9UOL+pzD4WDixIlobm7GqVOnwGazUVlZicrKSomTcsSpz3s79PHs2bNudbx+fn5EeoGO193dXaKOV4C1tTXKysokzsCmiuHDh+PBgwd48OABnj9/jvDwcBE18oULF4j0XdXIDx48QGpqKskYeePGDTx79gy1tbXEst7y8nJSLAuq+eOPPzB37lzMnj0bNjY2+Pzzz2FiYkLkfePGjdi3bx+RPjIyEo2Njfj2229hY2MDb29vbNmyBVeuXCF6jQYNGoTx48cT8y+OHTsGOTk5krmUauTk5DBmzBhcv34djx49Qnl5Of78808oKirCx8eHVF6B1h3ojG+SnZ2N2NhYVFZWIjY2FtnZ2aR192PHjsXdu3eRnJyMyspKBAcHo66ujnLbZ3/RbcvJyWHcuHFETImysjKcO3cOSkpKpOv6zJkzpCWJY8eORVZWFq5du4bKykpcu3YNWVlZpGGa8+fP4/79+1i5ciVh3WxsbKT8es/MzISdnR1sbW2hpaUFHx8fqKur49mzZwAAT09PDB06lLQPk8kEk8mEoqIiVFRUwGQyST01gknqTCaT6E1iMpm0rvAaM2YMkpOTiXM3JCQE9fX1RNyJsLAw/Pnnn0T64cOHo76+HiEhIaisrERycjLu3buHsWPHEmk6OjpQWlqK0tJSdHR0oLGxEaWlpW9dg0s2p0I6tKjP09LSkJKSAgAigXwKCgpI3ctUUlJSAiUlJbi4uIjV8aqoqIjoeBMSEuDh4UHoeB8+fCjSna6hoQEDA4PXYk11d3dHS0sLoUY2NjYmqZHZbLaIGnn58uWIiIhAcnIyoUYWjlHR2tqKkJAQcDgcqKioYMCAAVizZg3Mzc1pK0dMTAy0tbWxdu1aGBgYIDc3Fx999BEx811fX5/0xNba2ooPP/wQX331FS5cuIDGxkYiHoQAZWVlrFu3DmZmZmhpaUFCQgK2bdtGe8jq8ePHg8vl4sKFC0TApU8//ZTU+1ZXV0e6SdjY2BD1EhERAX19faxYsYJ07nt7e6O5uRnR0dFgs9kwMTHBxx9/TGmMCqD/6LYBYOLEieByuTh//jxaWlpgbW2N9evXS60LW1tbrFy5EmFhYYRi/sMPPyQ9VQuWyx46dIj0eYGBgSI/8n2hqKgIysrKcHNzI4Jf3bx5k+j17apvB8hWTD09PVhbW6OpqYloOKmqqpLSDBw4EAMHDiQas3Tg5eWF5uZmXLt2jQjctnbtWuLcZbPZqK+vJ+V7zZo1uHLlChISEqCtrY25c+cSMSqAzmGt77//nnh/8+ZN3Lx5E3Z2dli/fj0t5XgV+mtjgCreavW58NPTuwzdk01fF998882bzkKf+emnn950FiihP7g/qJ6z8KaQuT/eHiZNmkT7Z0iKtfMq/Pvvv5Qd623h7Y0wIkOGDBkyZLxlyHoqpCNrVMiQIUOGDBk9RCYUk85b3ajoL2pkuid3vi6kzbB/V6AzkujrRNJy0HeJtzkUc28wMzN701mgBGkRRmXI6Cn946qWIUOGDBkyXgOy4Q/p0KI+HzduHNasWYMbN26gvLwcGhoaGDp0KA4cOECrFhnoXG8eHh5OrPqwtrbGwoULu1Ujp6WlISwsDNXV1TAwMMCsWbMkOiWio6Nx5coVjBs3DvPnz6ejGP1Ctz1lyhTMmTMHTCYTxcXFOHnyJDIzM8WmdXV1JS0xFfDRRx8RvQtjx47Fxo0bRdLMnTsXL168oDTvAhwdHeHq6go1NTXU19cTdklxqKqqwtfXF3p6ekQ8ha6iK3t7e9jZ2RGOHIEMiq5AZALu3buHxMREQn0+bdo0qauwCgoKEBUVRajPR4wYIVZ9Hhsbi6dPn6KtrQ1MJhNTpkyRKMeiAj6fj7CwMNy5c4e4vhctWtRtOO20tDRcvXqVuL5nz54NLy8v4v+hoaEIDw8n7aOlpSWyGoTKctChcL99+zbu3LlDxOYxMTHBtGnTSCt3qMLZ2RmDBg0iVrHcu3dPJKaMAFVVVQwePBh6enrQ1tbG06dPiRWC4rCxscGYMWNQVFSEGzduUJ73viBrVEiHFvV5dnY2vL29sWjRIlhYWKCurg67du3CxIkTUVBQQGuwk2vXruHGjRtYtmwZjIyMEBkZiZ9++gl79uyRGIArPz8fJ06cQEBAAKFGPn78OD7//HORLv/CwkLcuXOH9i7Pd123PXz4cKxatQrHjh1DVlYWJk+ejJ07d+KTTz6R+gO6du1akgK6a9S+5uZmInS2ALoaFFZWVvDz88O9e/fw/PlzODo6YsKECbh69arYwG/y8vJoa2vD48eP4eLiIvaYxsbGYLFYqK6uxsuXL+Hq6oqJEyfi6tWrYtXXVPD48WNERUVhxowZsLS0xIMHD3Du3Dls2LBBovr83Llz8PX1xfvvv4+ioiKEh4eLqM/PnDkDdXV1LFy4kIhaSbf6PCYmBrGxsVi+fDmMjY0RERGBQ4cOYe/evVKv7+PHjxMPChkZGTh+/Di++OIL0vU9YMAAbNmyhXhP59g5XQp3JpOJWbNmESs5kpOTERQUhO3bt3fbYOkN1tbWGDx4MO7evYuqqirCyBscHCz12nj06FG3DRwNDQ34+fmJyB5lvBvQoj4HgNWrV2PkyJGwsrKCl5cXvv32W5SUlKCwsJDK/JPg8/m4ceMGpk6dCi8vL5iammL58uXgcrlSW8UCNfKUKVNgYmKCKVOmwNnZmaRGBjrDep88eRJLliyh1F4orhzvum47ICAAN27cQGxsLEpLS3Hy5EnU1NRg6tSpUvdrbGxEQ0MD8epqveTz+aT/C8dXoJqBAwciNzcXubm5aGxsxP3799Hc3CzxSbypqQn3799Hfn6+xIZOQkICcnJyUFdXh8bGRsLkSqcyPCkpCd7e3oT6fNq0adDW1pZ4Tdy/fx86OjqYNm0aoT738vIiaa0F6vPFixfD0tLytanPb9y4gWnTpsHb2xumpqZYsWJFt9d3bGwsXFxcMHXqVJiYmGDq1KlwcnISeQKWl5eHtrY28aIreBSdCnc3NzcMGjQIRkZGMDIywqxZs6CsrEy5BNHV1RXPnj3Ds2fP0NjYiJSUFDQ3N4vYYAU0NTXh3r17yMvLkzrHTE5ODqNGjUJ6ejqlYj0qkQW/ks5rUZ83NzfjzJkzsLa2pjXgkkCNLPyUqKioCAcHB6mTkPLz80WeLF1cXIhInALOnz+PQYMGSXwKpYp3XbetoKAAOzs7ZGRkkLZnZGR0O/x1+PBhnD17Fnv27CEF8BKgqqqKkydP4vTp0/jmm29omzzKYDCgp6eH8vJy0vby8nJK1/PLy8uDwWCIuGaoQqA+7zq8ZWdnJ1F9XlJSIpLe3t6epD7Pzs6Gubk5wsLCsG/fPvz888+4desW7erzxsZGDBw4kNimqKgIR0dHkbDiwrBYLJFrduDAgSL7VFVVYcuWLfjyyy9x/Phx2iI5vi6FO4/Hw4MHD8DlcikN/c5gMKCvry8y6VkwDN4XPDw80NbWRkQYfRuRNSqk0+vhj96oz48ePYrPP/8czc3NcHJyQmxsLJSUlF4poz1BmhpZkv9DsF93auT79++jqKgI27dvpzDHkvMDiNdtSzOkvi26bS0tLcjLy4v0IjQ2NoptdAKdErLffvsNeXl5UFRUxJgxY7Bnzx5s376dkLiVlZXh559/RmFhIdTU1DBjxgwcOHAA69evJyJ1UoVAU93a2kra3traKiKE6gve3t5oaWmhPP8CpKnPJSmnORwO7O3tRdIL1OdaWlqoq6tDQ0MD3N3dsXTpUtTW1iIsLAw8Ho8UeplKBFKw3l7fXQVkAKCtrU06521sbLBy5UoYGRmBzWYjIiIC3333HXbv3k35Shtp96nuru+eKNzLysrw/fff48WLF1BWVsaaNWsoHfpQUVGh5dowNDSEo6MjKcT620h/bQxQBa3q80WLFmHChAmoqKjAwYMHMW/ePCQlJYkdMxSnPudyuVIbISkpKfjrr7+I959++qnEPPdFU11XV4cLFy5g48aNtETH7K+67d4Eay0rKyM9+eTk5EBfXx+zZs0iGhU5OTkkL0tWVhZ++uknTJ8+HSdOnKAu41Kg8ntydXWFjY0NYmJiJDpxqKK3mmpJ5RRs5/P5UFdXx6xZs0TU51Q1Ku7du0fyR0gK1fwqQYG77tO1V8zW1hbbtm3D3bt3MXHixF4fX5jXrXA3MjLC9u3b0draivT0dJw7dw6bN2+mtGFBNYqKihg9ejQSExNp67WT8XqgVX0uGJu0t7fHkCFDwGQyceXKFSxYsEAkrTj1+dKlS7F8+XKJx5ekRmaz2aQn4ldRIws/FRQVFYHD4WDv3r3E/3k8HnJzcxEfH4+jR4/2aVJXf9Nts9lsvHz5UiQMs7a2dq/mQOTk5GD06NES/8/n85Gbm0vLzVKaprrrE9qrMHDgQLi5ueHatWskRwLVCNTn4lTmvVGfNzU1kdTnmpqaxNCNAAMDAzQ1NVGmPvfw8KDk+tbW1pZ6fYtDWVkZpqamElcz9IbXrXBXUFAghiEsLS1RVFSE+Ph4LFq0qM9lATrnlom7NlRVVV/52tDU1ISmpiYmTJhAbBM0oJYvX47Lly+/NaHpZT0V0qFNfS4OPp8vsRUqTn3e3UUgSY0svGyxo6MDz549kzr2bmtrK6JGzszMhK2tLYDOOQc7d+7EN998Q7wsLS3h5+eHb775ps+zxPubbluQV2FZEND5I9H1s6VhY2PT7Q9uT9K8CjweD7W1tSINlgEDBkhcUtpTBg4cCHd3d8TGxkrttqcCgfq86/wBaepzc3Nzsem7U5/X1tZSrj4XTDg0MjLCgAEDiOWIAjo6OpCTkyN1SbSNjY3IUmaBLVQSL168QGVlpcThut6W43Up3MXB5/MpXSHF4/FQU1Mjsoy3L9dGY2MjQkJCcPXqVeJVXFyMiooKiaut3hSyORXSoUV9zmKx8N133yEtLQ3FxcVITk7GvHnzoKqqKnH2vzj1eW/nX8jJyWH8+PGIjo4m1Mhnz56FkpISaY396dOnERISQrwfN24cMjMzERMTg4qKCsTExJDUyCoqKjA1NSW9lJWVoaGh0e36+FehP+i2Q0NDMWHCBEJVvnLlShgYGCA6OhpAp/1ROObEzJkzMXjwYJiYmMDc3ByBgYEYNmwYIiMjiTQffPABPD09YWRkRNgpra2tiWNSzdOnT4m4Etra2vD19YW6ujoxBOPl5UWongXo6upCV1cXCgoKUFZWhq6uLulp1NXVFV5eXkhKSkJTUxNUVVWhqqpKa3TJYcOGIS0tjVCfCzTzAl34tWvXcOnSJSK9n58fGhoaiDgVqampSEtLI5XVz88PLS0tREwUgfq8aywLKhFc31FRUUhPT0dZWRlOnz4tcn2fOnUKwcHBxPvx48cjMzMT0dHRqKioQHR0NLKysjB+/HgizcWLF5GTk4Pq6mqwWCwEBQWhtbWVUkOpcDnoUrhfvXoVubm5qKmpQVlZGa5evYpnz56RjksFT548gYODA+zt7aGtrY3BgwdDQ0ODeGjw8fHByJEjSfsIXxsqKirQ1dUlGm0vX75EfX096dXe3o4XL16gvr6e1gnAMqiFFvW5iooKEhIScPjwYdTX18PIyAgjR47E3bt3aTfhTZo0CVwuF3///TcRHGfjxo3dqpE//PBDXL16FaGhoTAwMMDq1avfaFjqd123nZiYCE1NTcyfPx+6urooKirC7t27iRn1TCYTBgYGRHoFBQWsWLECurq64HK5KC4uxv/+9z+kpaURadTV1fHJJ5+AyWSiubkZLBYL27ZtQ25uLqV5F1BYWAhlZWV4eHhAVVUV9fX1uHHjBvHUpKamJjKEMHPmTOJvfX192NraoqmpCZcvXwYAODk5QV5entTQA4CHDx/i4cOHtJTDzc0NLS0tiI+PJ9TngYGBJPW5cLe6rq4uli5dSlKfdw2gpKOjg+XLlyMqKgq//voroT7v+kNCNZMnTyau7+bmZtjY2GDz5s2k66K2tpZ0XdjZ2WH16tXEE7C467u+vh6///47MRRoY2ODr776Cnp6erSUgy6FO5vNxpkzZ8Bms6GqqgpTU1OsW7eO8hVrBQUFUFFRgaenJxEY7vr168TkX1VVVZFrY/bs2cTfBgYGsLOzA4fDeeds1P21h4Eq3mr1+e3bt990Fiihv7g/fv311zedhT4zZ86cN50FSugP7o/+4vYRzJF41+kP7o+VK1fS/hmrVq2i7FgnT56k7FhvCzLdmgwZMmTIkCGDEmRCMRkyZMiQIaOHyIY/pPNWNyr6y+QcaQFt3iXCwsLedBb6zJEjR950FihBkh/iXeLff/9901mghK7CvncVS0vLN52FdwJZo0I6suEPGTJkyJAhQwYl0KY+F8Dn8zF16lTExMTgypUr3QbM6it0KYUFy78qKyuhpKQEGxsbzJ49G8bGxpSXwc7ODo6OjlBVVUVjYyMyMjKkmj0NDAzg4eEBbW1ttLa2Ijs7W8Rb4uDgAFtbW6ipqYHL5aKkpASPHz+mtTeIz+fjt99+w4ULF8Bms+Hu7o4dO3aIhIAWJiQkBNu2bRPZ/vjxY8KAOXbsWBHvAAAsXLgQO3fupK4A6FwCKpjhXldXh8TERIkhtdXU1DBs2DAYGBhAR0cHjx8/Jkm4AGDWrFlilyEXFhaSls9SjZ2dHZycnEjnlDS3hYGBATw9PYlzKisrS+w5ZWdnRzqnHj16ROs5NWLECIwfPx7a2tqoqKjA5cuXRfIlwNbWFgEBATAyMoKSkhJRf8KCPQaDgUmTJmHw4MHQ0dFBVVUVQkNDReJaUImLiwvc3NyIVROC5d3iUFVVhb+/P/T19aGtrY0nT54gOTmZlMbBwUFskLhTp07RGqk1ISEBcXFxYLPZMDY2xty5c4nYPuLIzc3FlStXUFlZCW1tbYwbN05kSfbDhw+JZcr6+vqYPn36W9cT9CZ7Ko4ePYoffvgBFRUVGDhwIA4fPtyjcABJSUkYNWoUXF1daVtlJoA29bmAw4cPv9ZKoEsp/OzZM4waNQpWVlbg8XgIDQ3FL7/8gp07d1KqezY3N4eHhwfS09NRXV0NOzs7jBw5EjExMWLV2Orq6hg5ciRYLBbu3bsHAwMDeHl5ob29HaWlpQA6uzXd3Nxw//591NTUQFNTk1jXT+cJduLECZw5cwb79++HlZUVgoKCsHz5csTExEhdvaChoYGYmBjSNuHv+PLly6SbZW5uLpYvX47JkydTmn87OzsMHz4ct2/fRmVlJQYOHIgZM2bgn3/+EevNkJeXR2trK9LS0iTeCKOjo4kAUkDnMMb8+fMl/jBSgbm5OTw9PZGWloaamhrY2tpi5MiRiI6OlnhOjRo1Cvn5+bh37x709fXh7e0tck65u7uLPae6iuSowsvLC++99x4uXLiA/Px8DB8+HJ988gn27NkjNgBae3s7bt++jfLycrS3t8PW1hYLFiwAl8tFUlISAGDGjBnw8/PDP//8g8rKSri4uODDDz/Ejz/+SJSVSmxsbODv74/ExERUVVURduSLFy9KVIa3trYiIyNDrGBPgGD5uTB0NijS09MREhKC999/HzY2NkhKSkJQUBC++uorscvTa2trcfz4cfj7+yMwMBAsFguXLl2ChoYGESSvoKAAZ8+exdSpU+Hu7o5Hjx7hzJkz2LhxI2lZ/JvmTTUqBKqIo0ePYtiwYTh+/DimTJmCzMxMiYHsgM7AYoGBgRg3bhwlEWK7gzb1OQA8evQIhw4dwunTpynLsDToVAqvX78eQ4cOxYABA2BmZobAwEDU1dVJND2+Ko6OjigoKACLxQKHw0FGRgZaW1slPgHY2tqipaUFGRkZ4HA4YLFYKCgoIOm59fT0UFNTg+LiYrS0tKCqqgrFxcWUx6YQhs/n448//sDatWsxceJEODg44MCBA2hra0NERITUfeXk5EgRRoXjWQCdcRSE/xcfHw8LCwvKA/x4eHggKysLWVlZqK+vR2JiIjgcDilegzAcDgeJiYnIycmRuIy4vb0dLS0txMvMzIyIQEoXTk5OYLFYYLFYYLPZyMjIQEtLi8SIknZ2dmhubkZGRgbYbDZxTglLBAXnVFFREZqbm1FZWYmioiJaz6lx48YhOTkZd+/eRVVVFYKDg1FfXy/xSa20tBRpaWmoqKhAXV0dHjx4gKysLFK5/fz8cO3aNTx9+hS1tbVISEgQCShFJW5uboTDpqGhAcnJyWhqapIYR6KpqQnJycnIzc2VujSdz+ejtbWV9KKT+Ph4DBkyBEOHDiV6KZhMpkjPnIDExEQwmUzMnTsXxsbGGDp0KIYMGYKbN28SaW7dugVHR0dMnDgRRkZGxH3j1q1btJalt7ypiJqHDh3CypUrsWrVKjg7O+Pw4cMwNzdHUFCQ1P3WrFmDhQsXwt/fvy/F7jG0qc9bWlqwYMEC/Pbbb7QMEYjjdSmFARAXrcCFQAUMBgNMJlOkK7SyshL6+vpi99HT0xObXldXlzhpq6urwWQyiRu+uro6TExMRLTeVFJaWorq6mpS96aSkhJ8fX27fZJtaWnBmDFjMHLkSKxZs0ZqVzSXy0VYWBjmzp1L6RMEg8GAgYGBSKOxpKSE0vPZxcUFubm5tMU6oOqcqqioIJ1TNTU1r/WckpeXh7m5+SuFqRZgZmYGGxsbUrA0BQUFkRDWL168kNqN/6oIlOFde0BKS0v7HLNDUVERCxYswMKFCzFp0iTagnYBnXE5SkpKREzVTk5OKCgoELtPYWGh2PTFxcVEj4q4NM7OzhKP+f8TXC4XaWlpInK7iRMn4u7duxL3O3PmDPLz8ykfFpYGberzTZs2YejQoQgICOjRcV/FUtoVupXCAvh8Pi5fvgw7OztKw3QrKSmBwWCgra2NtL2trU3i0I2qqqrID0BbWxsYDAaUlZXR1taGkpISqKioYOzYsZCTkwODwUBeXl6vPBy9RTBe3/Xmpq+vL/WHx8bGBt999x0cHR3R1NSEP/74AwsWLEBoaKjYLtAbN26Aw+GQovVRgTS9M1UNSUNDQ+jp6ZGe1qhG0jnV3t4u8ZxSUVERuRa7nlPFxcVQVlbGuHHjiHNKEK6fDjQ0NCAvLy9WmCdNwgUA3377LbF/ZGQk6SYs6JXIy8tDTU0NHB0d4ebmRksXN13nVENDA27duoW6ujooKSnB1dUVAQEBuHz5ssR7WF9obm4Gj8cTkRCKE9EJYLPZYtPzeDw0NTURKnpxaegoQ1+g8twQ97unrKwsMqReU1ODly9fijQ+jYyMJM7Hyc3NxZdffomEhARaNQBdoUV9HhYWhps3b/ZqbFWcpTQwMBDLli2TuM/rVgoL+Pfff1FaWorPPvus2+O+CbqWxcDAAM7OzkhPT0dtbS00NDTg6ekJFxcXyiakhYWFkVrDx48fF5uX7urCw8ODJCLz8vLC7Nmz8ddff+Hrr78WSR8cHIyRI0fSFp2RzoCzLi4uqK2t7bOgjA66lrtrPRoaGsLFxQVpaWnEOeXl5YW2tjaS8Ot10F0d/fTTT1BWVoaVlRUCAgJQXV1NhH+/fPkyFi5ciB07doDP56OmpgbJycm0dhV39932lufP/x975x0VxfX+/zdl6SydpUoXRFEp0izYo6IBJbH3hsZojBqjMYmJGk3yMUZT7EZj7EoVUEQEVASkKIrSm/S6dKTu7w/OzneHLYLMKPLb1zl7jrvcGe/dKXvn3uc+r3LSOVRaWoo5c+Zg2LBhIp9i+8rb3GfftB9B++xvSziprI+g373du3fjhx9+6NH/Lez76ejowMKFC/Hjjz9i8ODBlNW3J9CiPr937x6ys7P5DH9eXl4YO3aswDmynTt3YsuWLaTPukc5d+ddK4WBrg7Fs2fPsHXrVj61d19pbW1FZ2cn3xOknJwc35Mml+bmZr7ysrKy6OzsJHrANjY2yM/PJ6ZzamtrIS0tDQcHB8o6FRMnTiQFJ3LnfysrK0m+l6qqKqHD7oKQlJSEjY0N8vLy+P5WVFSER48e0ZI+nKt37v4EKS8vLzC4sbdIS0vD3NxcZKwPFQg7p7gjDoIQNDIm6JzKy8vjO6dGjRpFS6eioaEBHR0dfNekqKdjLlwTbHFxMeEx4XYqGhoacPLkSUhLS0NRURG1tbXw8PCgxR4r7JySk5Oj5JzipaKi4o0jOG+LoqIiJCUl+UYQuN4UQTCZTL7jVF9fD0lJSWIaXdDosKh9DgQE/e4JCvzX1NSElJQU36hEeXm5wAeq+vp6JCQk4MmTJ/j8888BdOV94nA4kJaWxp07dzBx4kQKW/J/0KI+37FjB549e0ZIkrgrDH7//XecPXtW4H7fxlL6LpXCHA4Hly9fxpMnT7B58+Ze/TD2lM7OTrDZbL45exaLJXRJaVVVFd9JpaOjg+rqauLJQUpKiu8poicjTr1BSUkJRkZGxMvc3BxaWlpElD3Q9QMXHx9PWqr7JjgcDlJTU/mCNYGu5acaGhoCl9P1lc7OTlRUVMDQ0JD0uaGhodDhxt5gbm4OKSkpwnhKF8LOKR0dHZHnlKDy3c+p7lB9TvHS0dEhdB6/t84KQUPB7e3tqK2thaSkJGxtbfHs2bM+1VcQwpThBgYGlEfla2ho0BasKS0tDUNDQ75zNy0tjfSQx4uxsTHfdGtaWhoGDRpEnEvGxsa92uf7gspATUG/e4I6FTIyMrC3t0dYWBjp87CwMIEmXSaTiefPn5N+g9etWwdLS0s8ffqUVpvwW020HD16FK6urnB0dMSePXswfPhwtLe3IywsDMeOHUNqaqrAYLZBgwbReoLwKoW5HY3bt28LVAqrqqoS8/ATJ07Eb7/9htDQUGIpU2pqKml64/Lly4iPj8f69eshJydHjGzIy8v3WtEuivT0dDg5OaG6uppY/qegoEAsObSxsYGCggLi4uIAANnZ2bCwsMDIkSORnZ0NTU1NmJiYkFbhFBcXw9LSEmw2G9XV1VBSUsKwYcNQXFxM2/C+hIQEli5dihMnTsDY2BhGRkY4ceIE5OTkMHPmTKLc9u3bwWKxsHXrVgDAX3/9hREjRsDY2JiIqUhLS+MLNOrs7ISvry88PT1pmy98+vQpJk+ejIqKCmK5obKyMvEk7uzsDEVFRdIqIW5nk8FgQF5eHpqamoTWmRduAFr3+VQ6SEtLg7OzM6qrq1FVVUWcU9wVJ8OHD4e8vDxxTmVlZRHnVE5ODjQ0NGBqakoaOeQ9p7jTHzY2NrSeU9yl4q9evUJOTg7GjBkDdXV1YsXBxx9/DFVVVZw/fx4AMG7cOFRXVxM/2GZmZpg8eTJppNTY2BgqKiooLCyEqqoq3N3dISEhwXfzpopnz55hwoQJqKysJJaUKikpEQ81o0aNgqKiIqmO3LgkBoMBOTk5aGhooKOjAzU1NQC6pgjLy8tRW1tLxFRoamqSOvRUM2HCBPz3338wNDSEiYkJHj16BDabTQRmBwYGora2FkuWLAEAjBkzBg8ePICvry9cXV2Rm5uL2NhYLFu2jNinm5sb/vjjD4SFhWH48OF49uwZ0tPTsXnzZtra8Ta8r+mYLVu2YMmSJXBwcICLiwtOnjyJV69eYd26dQC6Rj2Kiopw/vx5SEpK8q1S09bWhpycnNDVa1RBi/r8fUKXUvj+/fsAupb18LJ06VKBPcW3paCgALKyshg6dCjReXnw4AExPCovL08aPm1sbMT9+/dha2sLc3NzYk07b4Q5d4rDxsYG8vLyaGlpQXFxMZ4/f05ZvQWxZs0atLS04Mcff0RtbS1GjBiBf/75h5SjoqSkBJKS/zdgVldXh++//x4VFRVQVlaGtbU1Lly4gOHDh5P2/ejRIxQXF8PLy4u2+mdlZUFOTg4ODg5QVFREVVUVbt68SQzjKigo8A3Nzps3j/i3trY2Bg8ejLq6Ovz333/E5yoqKtDT00NAQABtdeeFe04NGzaMOKfu379POqd4V3I1NjYiKioKtra2sLCwQHNzM5KSkkjn1IsXL8DhcPjOKTqe8LkkJSVBUVER06dPB5PJRElJCY4ePUoEYauoqJCmJCUkJODh4QENDQ1i5CkgIIC07FFaWhqzZs2CpqYmWlpa8OLFC/z777+0PeXn5ORATk4OdnZ2REK1W7duEXlPFBQU+HK48J7jWlpasLCwQH19PS5fvgyga5R37NixRBKyyspKBAYGikxu1lfs7OzQ2NiI0NBQ1NbWQldXF+vWrSNWA9XV1ZE60hoaGvD29oafnx8ePHgAFRUVeHl5keKnTE1NsWzZMgQHByMkJASamppYsWJFv8pR8T6ZN28eqqqqsGfPHpSUlGDYsGEICQkh0quXlJRQnuLgbejX6nPezHcfMv0xEO9t4P3B/FAZKO4POpcMvisePHjwvqtACf0t4+PbMhDcHx999BHt/8emTZso29cff/xB2b76C/1aKCZGjBgxYsT0J/rbapT+hlgoJkaMGDFixIihhH49UiHIr/Ah4uDg8L6rQAndl91+iNCVz+Jd8yZB3ocAHcs23wfd430+VAbK8aAb8UiFaGizlI4fPx5RUVGkbebNm4crV670udKiiI6ORmRkJOrr68FiseDh4SFyOWl2djYCAwNRVlYGJpOJ8ePHkwIvnz9/jvDwcCKjmZaWFtzc3GBvb09rOzgcDi5evIjbt2+joaEBlpaW+Oyzz0TOe96+fRvh4eHIz88H0LVscdmyZSQPSHBwMIKDg4mIeCMjIyxYsACjRo2ipQ2nTp2Cv78/6uvrMXToUHz11VciUyBHRETg7NmzKCwsRHt7OwwNDbFo0SLMmDGDKNPY2IgTJ04gMjISbDYbgwcPxtatW4X6E/pCbGws4fzQ1taGu7u7yMCx3NxchISEoLy8HMrKyhg7dizf8q3m5maEhYXhxYsXeP36NdTU1DB9+nTScaIaDoeDgIAAREVFobGxEaampliyZMkbM8ImJCTAz88P5eXl0NbWxpw5c0jn/rZt2wT+GE2cOJGI/KeSKVOmYNasWVBVVUVhYSGxOuhNDB48GLt370ZBQQF27NhBfC4lJQUPDw+4ublBTU0NJSUluHTpEpKTkymvOy8cDgf+/v6IjIxEY2MjzMzMsGTJEhgYGIjcLj4+Hr6+vsTx8PLyIj20dHR0wM/PDzExMaitrYWqqirGjBmDjz/+mBQQTQXR0dGIiIggLKWenp4i77VZWVkIDAxEaWkpmEwmJk6cSLrXxsTEICEhgViybWBggBkzZvS7WA9xp0I0tFpK16xZgz179hDbycvLU1NrITx9+hSBgYGYM2cOjI2NERsbi9OnT+Orr74SmKiqqqoKp0+fhrOzMxYuXIi8vDz4+vpCSUmJePqQl5fHpEmToK2tDSkpKaSmpuLq1atQUlKi9Ufgxo0b8PPzw5YtW6Cvr48rV65g165dOHnypNCUvs+ePYObmxuGDBkCGRkZ3LhxA99++y2OHTtGLHXkRlTr6uoC6Fqmt3fvXvz555+UX7znz5/H5cuX8f3332PQoEH4559/sHHjRly/fl2gNwboWl/NjfhmMBh4+PAh9u7dCzU1NSLL4U8//YTs7Gz88MMP0NLSwq1bt7BhwwZcvXqVlGirrzx79gwhISGYNWsWjIyMEB8fj3///RdffPEFX2I3oGtV0b///otRo0bh008/RX5+Pm7evAlFRUViGVd7ezvOnj0LRUVFLFy4kEi8RqXpVhAhISEIDQ3FqlWroKOjg5s3b+LgwYPYv3+/0OsyKysLx44dw+zZs2Fvb4/ExEQcO3YMO3fuJDqG3EyUXAoLC3Hw4EFaOqkuLi5YtmwZzpw5g/T0dEyePBk7duzA1q1bRT5ly8vLY8OGDUhJSSElxQO6HnTGjBmDkydPori4GCNGjMDWrVvx/fffC0y4RhUhISG4ffs21qxZAx0dHQQGBuJ///sffv75Z5HH4+jRo0THLjExEUePHsWuXbuI4xEcHIyIiAisWbMG+vr6yMvLw+nTp6GgoMDnjegLT548gb+/P7y8vIglpSdPnsTXX38t8l7r5OSERYsWITc3Fz4+PlBUVCQCXbOzs2FnZwdjY2NIS0sjIiICJ06cwPbt2wVeb+8LcadCNLRaShUUFKCjo0O8ul/QVBMVFQVHR0c4OTkRoxSqqqpCM3PGxMRATU0NHh4eYLFYcHJywqhRo0gjLObm5rCxsQGLxYKmpibGjh0LXV1dWiU33KeY+fPnY/To0TA2NsbWrVvR0tIi0ti3fft2zJw5E2ZmZjA0NMSmTZvQ2dlJeurittHAwAAGBgZYtmwZ5OTkKPeAcDgcXLlyBcuXL8eECRNgZmaG3bt34/Xr1wgNDRW6nb29PSZMmAATExMYGBhg/vz5MDc3J9rw+vVrREREYOPGjbCzs4OhoSHWrl0LPT09+Pj4UNqG6Oho2NvbY9SoUcQohYqKCpHPoTuPHz8mch1oa2tj1KhRsLOzIy1hTExMRHNzMxYvXgwjIyOoqanB2NiY6OTRAYfDQVhYGGbOnAkHBwcYGBhg9erVaGlpIV2v3blz5w6GDh2KmTNnQldXFzNnzsSQIUNIORyYTCZUVFSIV3JyMrS1tWnpcLu7uyMiIgIREREoLi7G+fPnUVVVhSlTpojcbs2aNYiOjiaJxLiMGTMG/v7+ePr0KcrLyxEWFobk5GS4u7tTXn8uHA4HoaGh+Pjjj4njsWbNGrS2too8HqGhoRg6dChmzZoFPT09zJo1C9bW1qTrKSsrC3Z2dhg5ciS0tLQwatQoDBs2jPL7VVRUFJycnODs7AwWi4XZs2dDVVVVaG6MR48eEbmBWCwWnJ2d4ejoSLqfLV68GKNHj4a+vj5YLBbmzp0LDocj8LiJ6b/QZikFgIsXL0JTUxNDhw7Ftm3b3phOty+0t7ejqKiIL8/54MGDhT5x5Ofn85W3tLREQUEBYc7jhXuCl5eX99iM+DaUlpaCzWbDzs6O+IzBYMDGxqZXwqaWlhZ0dHTwrXvn0tHRgaioKLx+/ZrP0tpXiouLUVVVBWdnZ+IzGRkZ2NnZ9TiXAYfDwePHj5Gfn09k4ezo6EBHRwdfwjFZWVlKh6zb29tRXFzMpwc3NzcXuha8oKCAr7yFhQWKioqI8yktLQ2GhoYIDAzE/v37ceTIEURGRqKzs5OyunenoqICtbW1pKQ3DAYDlpaWIpXr2dnZGDp0KOmzYcOGCd2mvb0dMTExGDt2LOVPc1JSUjAxMeE7d549eybSbeDm5gYWi4UbN24I/DuDweCzlLa2tr5RmNgXRB0PUT+gWVlZfImLuh+PwYMH4+XLl8QUwqtXr5CRkUFp3Ed7ezsKCwsF3jtF3Wu7dzRF3WuBruPQ0dFBqQmaCt6X+vxDgTZL6aJFi2BiYgIdHR2kpKRg586dSE5Opi1T3duY8+rr64Wa8xobG4nc+c3Nzdi7dy/a29shKSmJOXPm0Cpp4SaN6T7kp6qq2qucF2fPnoWGhgZfWuzc3Fxs3boVra2tkJeXx3fffYdBgwb1ud68cIejuclwuKirq6OkpETktg0NDXB3d0drayukpKSwfft2Ii5BUVERNjY2+Oeff2BiYgJ1dXXcuXMHL1684Eup3ReamprQ2dnJ1yFTUlISGkBcX18PCwsLvvK851N1dTVqamowYsQILFu2DFVVVQgMDERnZydtufi5AbbdXRAqKipCU3VztxNk7xUWsJuUlISmpiaMHj26jzXmh8lkQkpKiu//5sYNCEJHRwcLFizAjz/+KLTT9uzZM8yYMQOpqakoKyvDsGHD4ODgQHn8Qfc6A4JtyqKmcbo7jYCuY8j7nbi7u6OpqQk7duyApKQkOjs74eXlRakgjc57LS/BwcFQUVF550KsNzFQOwNUQYulFOgacuQybNgwWFhYwMHBAUlJSaQncC6CFLBtbW1gMBi9raLA+valvKysLLZs2YKWlhZkZmYiMDAQ6urqfE+lb0tERARJisW11vXF2Hf9+nVERUXhl19+4XuqNzAwwF9//YWGhgZER0fjt99+w6+//tqnjsXt27dx4MAB4v3vv//+1m1QUFDAhQsX0NzcjPj4eBw+fBj6+vpEgOCPP/6IvXv3wt3dHVJSUrC0tMRHH31Ei0ejtyZGYW3jfs7hcKCoqAhPT09ISkpCX18fdXV1ePDgAWWdipiYGPz777/Ee26a47c5Fr25gd6/fx82NjaUi/Z4EfT9C/pMQkICGzduxI0bN0R2Ys+dO4e1a9fi0KFD4HA4KCsrQ2RkJKU+mUePHuHcuXPEe65AStB329sfrO7HMC4uDjExMVi3bh309fXx6tUrXLx4EWpqakQKbaqg0yh67949JCUlYcOGDX3+DRDzbqHFUioIOzs7MBgMZGZmCuxUCFLAzp8/HwsXLuzR/rnmvO49ZVGWO0E964aGBpI5D+gyZXIDHfX19VFeXo579+5R1qlwcnIiDQ1yh2PZbDbpSV/UUxkvPj4+uHbtGn766SeBrhUGg0EsSRw8eDAyMzMREBCAjRs3vnUbxo4dSxoq51pKu1tJu7dJEJKSksSow+DBg5Gbm4tz584RnQoDAwOcOHECzc3NaGxshKamJr755htKl1kqKCgIPJ8aGxuFTieJOp+4Q7jKysqQkpIiPQlraWmhoaEB7e3tlHhMRo4cSZqe47X38p4/dXV1Ik2W3Z+CudsIio2qrKzEy5cvCSMi1dTV1aGjo4Pv/BdUR6ArONPMzAzGxsZYsWIFgK4fQUlJSVy8eBH79+/HixcvUF9fj99++w0MBgNKSkpgs9lYuHAhpVlwbW1tSSueuNc3VceDd5urV6/C3d2dmHY0NDREZWUlgoKCKOtUiLKU9uba6G4p5RIREYG7d+9i/fr1/XLpNJ2jWAMBWiylgnjx4gXa2tqEBqTt3LkTtbW1pNenn37a43pJS0tDX18fGRkZpM8zMjKELgE0MjISWN7Q0FCghZEX7o2aChQUFKCnp0e8Bg0aBDU1NSQlJRFl2tra8Pz58zfGPty4cQOXL1/G3r17ezxsyOFw+OaVe4uioiIMDQ2Jl6mpKTQ0NEhBjW1tbUhKSur1/K6w+nGFXXV1dYiNjcW4ceP61AZepKWloaenxxc/kJWVJXREx9DQUGB5fX194nwyMjJCVVUVaTi+qqoKysrKlInR5OXlwWKxiJeenh5UVFRISvL29nakp6eL7BibmZnxacxfvHghcJuHDx+CyWTSlrK6o6MDubm5sLGxIX1uY2PDdw0DXVOW27Ztw9dff0287t69i6KiInz99dd8x6mtrQ1sNhtSUlJwdHQk1OhU0P146OvrQ0VFBSkpKUQZ7vHoPn3Gi7m5Od/xSElJIR2PlpYWvtEC7jQIVUhLS8PAwICWe+29e/cQFhaGtWvXUjqdSSXimArRvFWX6+jRo+jo6ICjoyN8fHyQmZmJ1NRU/PHHH3BxcUF2djb27NmDhIQE5OXlISQkBJ9++ilsbW2FzrcKUsD2dtjLzc0Njx8/xuPHj1FWVoaAgADU1NQQvfaQkBBCwgN0LVFjs9lEngrutm5ubkSZ8PBwZGRkoKqqCuXl5YiKikJCQgKteSokJCTg6emJa9eu4dGjR8jLy8OhQ4cgKytLGpY9ePAgSSV//fp1nD9/Hps3b4a2tjaqq6tRXV1NkiOdO3cOKSkpKCsrQ25uLv799188f/6ccn24hIQE5s+fj3PnziEiIgLZ2dn48ccfIScnR8rPv3v3bpKP49y5c4iLi0NRURHy8vJw8eJFhISEYNq0aUSZmJgYxMTEoKioCHFxcVi/fj2MjIwwa9YsStswevRoJCYmIiEhAeXl5QgODkZtbS1hvA0NDcX169eJ8o6OjqipqSHyVCQkJCAxMZH0hOjo6IimpiYEBwejsrISaWlpiIyMpFVFLCEhgSlTpiAoKAiJiYkoLCzE6dOnISsrSwqkPXXqFKk9U6ZMwYsXLxAcHIySkhIEBwfj5cuXfKstOjs78fDhQ4wePfqNnfG+EBwcjIkTJ2L8+PHQ09PD0qVLoampibt37wLoGtn87LPPAHR1RAsLC0mvuro6tLW1obCwkJhqNTc3J1b3WFlZYefOnZCQkEBgYCBt7ZCQkMBHH32EoKAgJCQkoLCwEKdOnYKMjAzpeJw4cQLXrl0j3k+dOhUpKSkIDg5GcXExcTx4rydbW1vcvHkTT58+RUVFBRISEhAaGkr5/crNzQ1xcXGIi4tDWVkZ/P39wWazibwTQUFBuHTpElHe1dUVbDYbAQEBKCsrI7blve/cu3cPt27dwrx586Curo66ujrU1dW9E5OvGOqgxVIqIyOD8PBwHDlyBA0NDTA0NIS7uzt2795N601n5MiRaGxsRFhYGJGQZdWqVSLNeatXr0ZgYCCio6PBZDLh4eFBepJubW2Fr68vampqwGAwoK2tjYULF5LsenTwySefoKWlBX///TeR/Grfvn2kSOiKigrSUFxwcDDa29uxf/9+0r4WLlyIxYsXA+gaSTp48CCqq6uhqKgIExMT7NmzR+CUVF9ZunQpWlpa8OuvvxLJr/7880/ScGdZWRmpDc3Nzfj1119RXl4OWVlZGBkZYc+ePaQfsoaGBhw9ehTl5eVEEp3169dTrkAfPnw4mpqaEBERQSRTW7p0KREzUF9fTxqOVldXJyyLsbGxYDKZcHd3J0Xsq6qqYsWKFQgJCcGff/4JJpMJV1dXSkdZBDFjxgy0tbXhv//+I5Itbd26lZQToaqqivT0ZGFhgXXr1sHX1xd+fn7Q1tbGunXr+JKXvXz5ElVVVRg7diytbYiJiYGSkhK8vLygqqqKgoIC/Pzzz0SwqZqaGmmqrScwGAzMmzcP2traeP36NZ4+fYq///6bMLjSxYwZM9Da2orz58+jqakJpqam+Oqrr0jHo7q6mnRtWFhY4LPPPoOPjw98fHygra2Nzz77jHQ8Fi9eDF9fX5w/fx51dXVQVVXF+PHjezVV3RNsbW3R1NSEO3fuoK6uDrq6ulizZg1xr62vrxd4r+VaYlVUVDB79mzSyFZ0dDQ6OjpI8UBAV2eK96HifTNQRxiool9bSm/evPm+q0AJdGR6fB/09obdH6Fr9dG7pj/ONfeWgWJo5AbCfugMhDTddOYX4bJz507K9sUb3D5Q6NfuDzFixIgRI6Y/IR6pEI04jFWMGDFixIgRQwnikQoxYsSIESOmh4hHKkTTrzsVVMqh3ifdba0fKnQmNXpX0C3ueld4eXm97yr0mdOnT7/vKlDC06dP33cVKIFu8/JAQdypEM1bdyqWL1/OF6ULAB999BFu376NkydP4tKlS0hKSiIigd+FaY7D4cDPz4+kFF66dGmPlMI+Pj6EUviTTz4hKYWbm5vh4+ODxMRE1NXVwcjICIsXL6bFAWJlZQUbGxvIy8ujpqaGWLYlCHl5eTg6OkJTUxNMJhMvX77kE14ZGRlhxIgRUFZWJpLWpKSkIDs7m/K68xITE4P79+8TKydmzpwpMBkXl5ycHELLzmQyMW7cONISu4SEBIEOh71799KWdS86OhqRkZFEGzw8PEQe8+zsbGKJMpPJxPjx40l65+fPnyM8PByVlZXo6OiAlpYW3NzcaL+hL1u2DJ999hm0tbWRkZGB77//XqgY7fDhw5g3bx7f5+np6cQSQB8fH1K7uNy9e5cW5TmXgaDbHjp0KEaMGAEFBQWw2WxER0cT/393FBQU4OLiAi0tLaioqOD58+d49OgRXzkZGRk4OjrCxMQEsrKyqK+vR0xMjFBPDRVwOBz4+voiIiKCuNcuX75c5L22sLAQPj4+yM3NRWVlJRYvXsy3siMtLQ3BwcHIzc1FTU0NNm/eTLoXi+nf9GmkYtq0aaQ8CcD/PQk2NTVh2rRpmDZtGqXRsm8iODiYUArr6uoiICAAv/76K3755RehSuHMzEz8/fff8PLyIpTCf//9N7799ltiudaZM2dQVFQEb29vqKmpITo6Gr/88gsOHDjwxgyRvcHExAROTk6IiYlBWVkZrKysMHXqVPj6+gpMNiYlJYXXr18jOTmZT/7EpaWlBcnJyaipqUFnZycMDQ0xduxYvH79GkVFRZTVnZfk5GQEBQXBw8MDxsbGiIuLw9mzZ7Flyxah2vCzZ8/C0dER8+bNQ15eHgICAgjXBxdZWVls27aNtC1dHYqnT58iMDAQc+bMgbGxMWJjY3H69Gl89dVXIvXOzs7OWLhwIfLy8uDr6wslJSVimbK8vDwmTZoEbW1tSElJITU1FVevXoWSkhItZk8A+Pjjj7Fnzx7s3LkT8fHxWLJkCS5evAg3NzeBx/+7777DTz/9RLyXlpbG3bt3SauxVq1aRfre1dTUEB4eTuuKrYGg2zYzM4OrqysePHiA0tJSWFtbw93dHVevXhXolOFe36KSxklKSmLmzJlobm5GWFgYkdmyrwnt3kRQUBBu3boFb29v6OjoICAgAD///DP+97//Cb3XtrS0QEtLC46Ojrhw4YLQMoMGDcK4ceNw5MgROpvwVohHKkTTp0BNWVlZktpcR0eHuLg3b96MHTt2kJ406YZXKczVe69duxatra1C9edAVxKjYcOGCVUKt7a2IiEhAfPmzYOVlRVYLBbmzJkDLS0t3Lt3j9I2DBs2DBkZGcjIyEBtbS3i4uLQ2NgoVODW0NCAuLg4ZGVlEamxu1NaWor8/HzU1taivr4eL1++RHV1NVgsFqV15+Xhw4dwcHCAo6MjtLW1MWvWLKioqAhVO8fFxUFVVRWzZs2CtrY2HB0d4eDggAcPHpDKSUhIQFlZmfSii6ioKDg6OsLJyYkYpVBVVRV6LsXExEBNTQ0eHh5gsViEZp53+svc3Bw2NjZgsVjQ1NTE2LFjoaurS7mamhdvb29cvnwZly5dQmZmJr7//nsUFxdj2bJlAsvX19ejoqKCeI0YMQKqqqq4evUqUaampoZUxs3NDc3NzbR2KgaCbnv48OFIS0tDWloaampq8OjRIzQ0NAhddl5fX4/o6GhkZGQIvb6trKwgKyuL0NBQlJaWoqGhAaWlpbQuEeVwOLh9+zY8PDwwatQoGBoawtvbG62trQJHUriYmZlh4cKFcHFxEfowMGLECHz66acYNWoUXdXvE+KMmqIZUKs/qFQK29jYENt0dHSgs7OT7yJgMBgCUwS/LZKSktDQ0EBxcTHp86KiIkrjS3R1daGioiJ0yLWvcDX03VMOW1hYID8/X+A2+fn5AssXFhaS1Mitra34+eefsX//fpw7d462kRZuG7qnOh88eLBIvbMgHbQwvTP3x6u8vJyWaTSg6xwdPnw4X1xPVFRUj4eUFyxYgAcPHqCwsFBkmYCAAFL2VioZCLptSUlJaGlpoaCggPR5YWEhdHR03nq/xsbGKCsrw5gxY7B06VLMnTsXtra2tP5oce+1vKOIDAYDVlZWtHXIxHwY9Gn6IygoiE8g8/XXX+O7777rU6XeFm52Q0F64L4onuXl5WFubo6AgADCoxATE4OcnBxKn/ZlZWUhKSnJd2Nubm7u802OwWBg/vz5kJKSQmdnJ2JiYvg6L1TB1YYLUh0L64QJEr91VyNra2vj008/BYvFQktLC6Kjo3H8+HF88cUXlCfmolPv3NzcjL1796K9vR2SkpKYM2cObXpndXV1SEtLo6KigvR5RUUFtLS03ri9trY2Jk6cSKS/FsTIkSMxZMgQwr5JBwNBty0nJyfw+m5qauqT50JZWRl6enrIzMxESEgIVFRUMHbsWEhKSlLqMOGF63jq7b12IDBQRxiook+digkTJuDYsWOkz942vkCQ+ry1tZVP283Lo0ePSDEdW7duBUCd4pn3M29vb5w+fRpffPEFJCUlYWxsDBcXF6FPSX2he5JTCQmJXivcu9PW1gZ/f3/CUOro6Ij6+nraRisE0Vs1MrfN3G0GDRpEknkZGRnhzz//xKNHj/Dxxx9TW9k31Kkv5WVlZbFlyxa0tLQgMzMTgYGBUFdXp8x625N69PQ4zJs3D3V1dbh9+7bQMgsXLkRqauo7WQUxEHXbfb2+JSQk0NzcjPv374PD4aCyspKIG6GqUxEdHY1//vmHeN89rolLP07QTBniToVo+tSpUFRUpOxGKEh9vmrVKqxZs0boNsKUwjU1NZQrhVksFnbt2oWWlhY0NzdDVVUVf/31V4+e9npKS0sLOjs7+UYl5OTkKBlW5j7RVVdXQ0VFBcOHD6elUyFMGy5KjaykpPRGbXh3JCUlYWBgQMuTEVfvLKhOwuI4RKnPeX0nkpKSxMiKvr4+ysvLce/ePVo6FdXV1Whvb+ebPtPU1OQbvRDE/PnzcePGDaFBf/Ly8vDw8MD//vc/SuorjIGg2379+jU6Ozv5ghjl5eX7dH1zRwZ5f9DZbDbxnVFhKLWzsyPda7mW5traWlKQbF1dHd/ohZj/v+g3MRWC1OfCAsm4CFMKC1I8v0kpzKshBrqUwoK2kZWVhaqqKhobG5GSkkKpiKuzsxNVVVV8NzU9PT2Ul5dT9v8AXb1tuuRuXA29IA24sKV6RkZGfOUzMzNhYGAgtJ4cDgclJSW0BGty20CH3lkQ3Js01bS1teHZs2d8wrJx48YhISFB5LYuLi4wNTUl2Sa7M2vWLMjIyMDHx4eS+gpjIOi2Ozs7UVFRwfd/6Ovr96lzX1payvdDzr1HUaU8l5eXJwXkC9O3p6WlibzXDgQkJSUpew1E+jRS0dLSwncxSEtLQ1NTE6WlpSgtLSV+KJ4/fw5lZWUMGjRI4BSJrKwsX2IiUVMfguAqhW/evAkWiwUdHR0EBgZCRkYGLi4uRLkTJ05ATU0Nc+fOBdCVW+Onn35CUFAQ7OzskJSUhBcvXuDbb78ltnn27BmAriDHsrIyXLlyBTo6OpSbGVNSUjBu3DhUVlaivLwclpaWUFJSQlpaGoCuBDWKioq4f/8+sQ33+2QwGJCTk4O6ujo6OzuJec/hw4ejsrKSeEozMDCAubm5yCjtvjJmzBhcu3YN+vr6MDIyQlxcHGpqagjF9+3bt1FbW0vkQ3BycsKjR48QFBQER0dH5OfnIyEhAfPnzyf2effuXQwaNAgaGhpETEVxcTE8PDxoaYObmxsuX74MQ0NDGBkZITY2FjU1NcSKppCQENTW1mLBggUAun6Eo6OjERgYCCcnJ+Tn5+Px48dYtGgRsc/w8HAYGhpCQ0MDHR0dSE1NRUJCAq3JrE6cOIE///wTycnJSExMxOLFi6Gvr4/z588DAL755hvo6Ohg06ZNpO0WLlyIxMREpKenC933woULcfv2bZKRki7c3Nxw6dIlGBoawtjYGDExMXy67bq6OixcuBBAl247OjoaAQEBcHZ2Rl5eHuLi4ghjL/B/uu3FixcTum1A8P2ICp49e4aJEyeivLwcZWVlsLa2hrKyMl6+fAkAcHR0hKKiIiIiIohtNDQ0AHTdW+Xl5aGhoYHOzk7iO3/x4gWGDRuG0aNHIyUlBSoqKrC1teV7UKISCQkJTJs2DYGBgXz3Wt48IMePH4eamhpxnXMDoLn/rq6uRn5+PrGSEOga0eHNy1NRUYH8/HwoKir2C6mhePpDNH3qVNy+fRu6urqkzywtLZGWlobjx4+TpjO4T0pnz57F8uXL+/LfisTd3R2tra34999/CaXw9u3b36h4fpNSuLm5GdevXyeU4aNGjcInn3xCuW47NzcXsrKyGDlyJJEc586dO0SOCgUFBb6hW16tsaamJszMzFBfX4/r168D6LoZubi4QFFRER0dHaipqUFUVBStyxhHjBiBpqYmhIeHo76+Hjo6Oli+fDkxVFpXV0d0eoCujtGKFSsQFBSEmJgYMJlMzJo1ixRd3tzcDF9fX9TX10NOTg56enrw9vam7ely5MiRaGxsRFhYGJFsadWqVUQnrq6uTqDeOTAwENHR0WAymfDw8CDlF2htbYWvry9qamrAYDCgra2NhQsXYuTIkbS0AQACAwOhpqaGLVu2QFtbG+np6Vi8eDGxmkNbWxv6+vqkbZSVleHu7i4y6NrU1BROTk4CE2XRwUDQbWdnZ0NOTg4ODg5QUFBAdXU1QkJCiBwVioqKfCNvn376KfFvbW1tWFhYoL6+HhcvXgTQFcQaHBwMV1dXfPrpp2hsbMTz589pj3GZOXMmWltbce7cOTQ1NcHMzAxff/016V5bWVlJutey2Wzs2rWLeB8SEoKQkBBYWVkRD3E5OTnYv38/UYbbzrFjx8Lb25vWNvUEcadCNP1afS4s49+HBu90zIfMQEjTTXUn8H2xdu3a912FPjNQ0nR3XyL6oTIQ0nS/i9wW+/bto2xfvKPhA4WBcYcVI0aMGDFi3gHikQrRiDsVYsSIESNGTA8RdypE0687FXRlS3zX8M7hfsi8y5wWdNE9F8qHSn9NYdwbRAWAfkh0z8b7odKPZ8LFfED0606FGDFixIgR058Qj1SIhhb1+aVLl7B7927cuXMHBQUF0NTUhKenJ/bu3Ut7YpSYmBg8ePAA9fX10NbW7rFuu7y8HMrKynBzcyOWPQJAYmKiQN32nj17aM26x+Fw4OPjg3v37qGxsRHm5uZYsWLFG7XC169fJ7TCS5YswfTp00llAgICEB8fj+LiYsjIyMDCwgILFiygJeHPQNBUU30+AV2rWO7cuYMXL16gubkZampqmDFjhlBpHBVMnz4dc+bMgZqaGl69eoXTp08Tyxi7M2zYMFL0PZf169cTo4cTJ07E5s2b+cp4eXnRasccMWIEHBwcoKioiKqqKkRGRgod0TQ3N8eIESOgpaUFKSkpVFVVISYmhuSf0dDQgKurK7S1taGiooKIiAg8efKEtvpz4XA4uHXrFqKjo9Hc3AwjIyPMnTuXbzVdd54+fYrg4GBUVlZCU1MTM2fO5BsJvX//PsLDw4kVMnPmzKElsRqHw4Gfnx9Jfb5s2bIeqc/z8vJQWVmJRYsWCVxlc/fuXQQHB6O2thb6+vpYvHgxbRbf3iLuVIiGFvV5UVERiouLcfDgQVhbWyM/Px/r1q1DcXGxwB9oqnj27BmCg4Ph4eFB5EY4d+4cvvzyS6G67XPnzmHUqFGYN28e8vPzCd0275CmrKwskQKcC91pfG/evElohXV1deHn54f9+/fjt99+E6kV1tbWhpOTk1CtcGpqKqZMmQIzMzN0dHTg2rVr+Pnnn/Hrr79CTk6OsvoPBE01HedTe3s7zpw5AyUlJSxcuJDI5kpHTgQuY8aMwerVq3H8+HGkpqZi2rRp2L17NzZs2CAyG+m6devQ1NREvO+ezbKxsRHr168nfUZnh2Lw4MEYP348wsPDUVxcjOHDh2P27Nn4999/Bfo/DAwMkJ+fj4cPH6KlpQVDhw6Fp6cnLl26RGQTlZaWRm1tLTIyMuDm5kZb3btz9+5dREREYNGiRdDW1kZoaCj++usvfPfdd0Kvw9zcXJw9exbu7u4YPnw4nj17hn/++QdffvklkQAsMTERvr6+mDt3LkxNTREdHY1jx45h165db61QEEZwcDBu3bqFtWvXEurzX375Bb/++qvQe1RraythIeYuFe1ObGwsLly4gOXLl8PCwgIRERH43//+h59//rlf5KkQIxpa1OfDhg2Dj48PZs2aBTMzM0ycOBE//fQTbt68SVvmQAB48OABHBwcMGrUqLfSbY8aNQr29vakxFLAu9VtA2StsKOjIwwNDbF+/foeaYUXLVoEV1dXoUsnd+zYATc3NxgYGMDIyAje3t6orKykPGfFQNBU03E+JSYmorm5GUuWLIGxsTHU1NRgbGz8xifUvuDh4YG7d+8iLCwMhYWFOH36NCorKzFjxgyR29XW1qKmpoZ4dc/OyOFwSH/nzTtCB/b29khJSUFKSgqqq6sRGRmJ+vp6oTFLkZGRSEhIQFlZGWpqahAdHQ02m03KP1NWVob79+8jPT1dqLmUajgcDiIjIzF16lSMHDkSenp6WLx4Mdra2kRmOY2IiIClpSWmTp0KHR0dTJ06FZaWlqREWREREXBxcYGrqyt0dHTg5eUFNTU1PHz4kPI2CFOfx8TECN3O1NQUCxYsEKk+v3XrFtzc3DB+/HhilEJDQwPh4eGUtuFtEavPRfPO8oRyTaB05Qlob29HcXGxQH32q1evBG7z6tUrvvKDBw9GUVERn277l19+wYEDB3Du3Dna7J5cysvLUVNTQ0qaxGAwMGTIEEpV6wCIJ1Fh/oS3YSBoquk6n16+fIlBgwYhICAAP/30Ew4fPoyIiAjK0il3R1paGubm5nxD+k+ePHnjdMvhw4dx7tw57N27l5SEjIu8vDxOnz6Nf/75B9999x1t+nagKzUyi8UiTV0AXedNb6buZGRk8Pr1a6qr1yuqqqpQV1dH+v4ZDAbMzc1Fdu7z8vL4jpmVlRWxTXt7OwoKCkSWoQqu+px3RJcK9Xl7ezvy8vL4zrdhw4b1G6W6uFMhmj51Krjqc97X3r17+cpVVVVh7969tGZD40p1uv84ChJVcamvrxdYnqtGBgAtLS188sknWLp0KebPnw8Gg4Hjx4/TqvcVpnBnMpmUPg1yOBxcuHABlpaWlGalpENTLQg6NdV0nU9sNhspKSngcDhYvnw5JkyYgAcPHpCeNqmEyWRCSkqK77ypra0VOmXEZrPx119/4cCBAzhw4ACKioqwd+9eDB06lChTVFSEI0eOYN++fTh48CDR8aZrxEVeXh6SkpJ850JTU1OPO5UODg5gMBjvfdUJdxqpu+RQWVmZb4qp+3bdt2EymcT5KOq6E7Xft0GY+pzJZPLJGXtDfX09Ojs7+dopSPoopn9Cu/q8rq4O7u7usLa2xu7du4XuS5D6vK2tjZLYBVE9QkEqZd7PBem2//rrL0p12w8fPsSZM2eI99u3b+9xffvCuXPn8OrVK5HHpS8MRE010LfzqbOzE4qKipg9ezYkJSWhr6+Puro6PHjwAJMmTaKtzr1ZLlhUVEQKfkxPTyeCrbnZYdPT00k/zqmpqfj9998xc+ZMnDp1irqKU4SlpSVcXFwQEBBAifG3N8THx+PKlSvE+3Xr1gks9zbXh6DjSscTcHR0NCl+jhtjRtfTNp33jr7SX+rRX6FVfV5fX49p06ZBSUkJfn5+Im/+gtTnc+fO7bFXgKvb5ubQ59JbNXJjY2OPdNtVVVU9qldPsLe3J32P70IrfO7cOSQmJuL7778nhEVUMRA01XSdT0wmk89QqK2tjfr6erS3t1M+PVhXV4eOjg6+4FgVFZVejXqlp6dj/PjxQv/OjW2h63g0NzcTHTJeFBQUSMGkghg8eDCmTp2KoKAgoVNXdGJjY0MyqXKv7+7Xc0NDg8h4LSaTyXdN8Y7wCbvu6uvr+Z78e4udnR3pHsUNyK2pqSGNePX1HqWsrAxJSUm+UQlBozTvi4FqF6UK2r6duro6TJ06FTIyMggMDHzjygJB6vM5c+b0+P+TlpaGnp4e37xbVlYWaaSBl0GDBgnUbevr64vUbRcXF1MarClIK6yqqornz58TZdrb25GamtrnoX4Oh4OzZ88iPj4eu3btgra2dl+rz8dA0FTTdT4ZGRmhqqqKFENRWVkJZWVlWuKN2tvbkZWVxScsGzlyJGG+7QmmpqZvNJH2pMzb0tnZibKyMr7v3sjISGSMk6WlJaZNm4aQkBBaBXqikJOTg5aWFvHS0dEBk8kkjfRwj5Oo5crGxsZ8UzdpaWnENtLS0jA0NOQ7runp6SL32xPk5eXBYrGIF13qc2lpaRgbG/MZVlNSUvqNUv19xlQcPXoUJiYmkJOTg729PR48eCC0rK+vL6ZMmQItLS0wmUy4uLggNDS0L03vEX3qVHDV57wvrmJ76tSpaGxsxJkzZ1BXV0f8XVjQnaysLJhMJunV22HtsWPHIiEhAQkJCSgvL0dQUBCfbvvatWtEeScnJ7DZbAQFBaG8vJzYlmtUBbqWfmVkZKC6uhrFxcXw8fFBSUkJX+4BKuFqhbk5JQoKCnD8+HE+rfDRo0dJw6rcIKe8vDxCK5yXl0fKhHn27FlER0fj888/h7y8PBG139raSmkb3NzcEBcXh7i4OJSVlcHf359PU33p0iWivKurK9hsNgICAlBWVkZsy/t0zNVUz5s3j9BU19XV0ZYlk47zycnJCU1NTQgKCkJFRQXS0tIQGRkJFxcXWtoAdOUmmTJlCiZPngwDAwOsWrUKWlpauHXrFgBg6dKlpJwTH3/8MZycnKCrqwtDQ0MsXboUo0ePRnBwMFFm/vz5sLW1BYvFgomJCTZt2gQTExNin3SQmJgIGxsbDB06FOrq6nBzc4OysjKSk5MBdC2d5c15wO1QREVFoaSkBAoKClBQUICMjAxRRlJSkvixl5KSgrKyMrS0tGhZosxFQkIC48ePx507d5CcnIzi4mJcuHABDAYDDg4ORLnz588jMDCQeD9+/HikpaUhLCwMpaWlCAsLQ3p6OiZMmECUmTBhAmJiYhATE4PS0lL4+PiguroaY8aMobwN06ZNw82bN5GQkICCggKcPHkSMjIypHP5+PHjuHr1KvG+vb0d+fn5yM/PR3t7O9hsNvLz80mq8+nTpyMyMhJRUVEoKirChQsXUFVVRev04IfA1atXsXnzZuzatQtPnjzB2LFjMX36dKGjb/fv38eUKVMQEhKCxMRETJgwAbNmzaI9Dwst6vPjx48ThtHu0yO5ublCn1b7yvDhw9HY2EjotlksFkm3XV9fz6fbXr58OYKDgxEbG0votnkjml+/fg0/Pz+Sbpvup2QAmDVrFlpbW3H27FkisczOnTv5FO68Q3FsNhvffPMN8T44OBjBwcEYMmQIobC+e/cuAPAF1Hp7e1O6Tn8gaKrpOJ9UVVWxcuVKBAcH448//gCTyYSrqyutORIePnwIZWVlojOWn5+PPXv2ELka1NTUoKWlRZSXlpbGypUroa6ujtbWVrx69Qo//vgjEhMTiTKKiorYsGED1NTU0NjYiJycHOzcuZPWCP2MjAzIy8vD2dmZSH7FvTa5deIdQRw+fDikpKQwadIk0g/SixcviCc2JSUlLFmyhPibg4MDHBwcUFBQgOvXr9PWlsmTJ6OtrQ3Xrl1DU1MTjI2NsWHDBtKILpvNJj3NmpqaYvny5QgKCkJwcDA0NTWxYsUK0v3U3t4ejY2NuH37NnHdrV+/nvIcFQDg7u5OUp+bmppi+/btfPeo7upzXjMnr/qcq0R3dnZGQ0MD/P39UVNTAwMDA2zbtq3f5Kh4XzEVhw4dwqpVq7B69WoAXauzQkNDcezYMRw4cICv/OHDh0nv9+/fj4CAANy8eRO2tra01bNfq899fX3fdxUogc6Mj+8Ssfuj/3Du3Ln3XYU+IypG40NioLg/6BydeVc4OjrS/n90/7HuC+vXr+e7J8nKyvIlw2ttbYWCggKuX7+O2bNnE59/8cUXePr0KaKiot74f3V2dsLY2Bjbt2/H559/Tk0DBCCOOBEjRowYMWLeAwcOHICKigrpJWjUobKyEh0dHWCxWKTPWSxWjx/2fvvtNzQ2NmLu3LmU1F0YYqGYGDFixIgR00OonP7YuXMntmzZQvpMVMr+t11qe/nyZfzwww8ICAigJTifl37dqRgo64H//PPP910FSuDO5X3I0JkO+12yb9++912FPvM+lnfSwftaVUI1dMse3wXvYvqDyt8lQVMdgtDU1ISUlBTfqER5eTnf6EV3rl69ilWrVuH69euYPHlyn+rbE8TTH2LEiBEjRkw/RkZGBvb29ggLCyN9HhYWRloR2J3Lly9j+fLluHTpEtzd3emuJgCa1Oe3b9+Gt7c37t69i+LiYigpKcHV1RW//PILrXpnoEtVff/+fSJav6eq6rKyMjCZTIwbNw7Ozs7E3xMSEgSaVffu3UtbJseJEydi+vTpUFVVRVFRES5dutQj54e5uTl27tyJoqIifP/996S/KSgowMvLC/b29lBUVERFRQWuXLmCZ8+e0dIGoGtoLjAwEFFRUUR0+KJFi6Cvry9yu4SEBPj7+6OiogJaWlqYM2cO7OzsSGXYbDZu3LiB58+fo62tjViZQcfKIg6Hg4sXL+L27dtoaGiApaUlPvvsM5EBuLdv30Z4eDjhqjA3N8eyZctIfhPu6hzucjojIyMsWLAAo0aNoqUN169fx927d9HQ0AALCwusXr1a5CqmgoICXL16FTk5OaioqMDy5cv5bkzXrl3jWyWhoqKC06dPU94GoGsFUGRkJOrq6qCjowMPDw+RzpHs7GwEBgaitLQUTCYTEyZMIN2Enz17hvDwcFRWVqKzsxOamppwc3MjLe2kGmtra4wYMQIKCgpgs9l49OiR0HlxBQUFODs7Q0tLi8gLIUgqKCMjA0dHRxgbG0NWVhb19fWIiYlBQUEBbe0wNzeHlZUV5OXlUVtbiydPnhArigShpaUFW1tbqKiooLm5GampqcjOzib+LiEhAWtra5iYmEBeXh51dXVITk7udwHi72sEfcuWLViyZAkcHBzg4uKCkydP4tWrV0SGVu69//z58wC6OhRLly7FkSNH4OzsTHyP8vLytI5K0aI+B7qWNi1atAiDBg1CdXU1fvjhB0ydOhW5ublCE0v1leTkZAQFBcHDwwPGxsaIi4vD2bNnsWXLFqGq6rNnz8LR0RHz5s1DXl4eoarmFdrIyspi27ZtpG3p6lA4Ojpi4cKFOH/+PDIzMzFhwgRs2bIF33zzDaqrq4VuJy8vj7Vr1+Lly5d8J4yUlBS2bduG+vp6/PXXX2Cz2VBXV6ddrHTr1i3cuXMHK1euBIvFQlBQEH777Tf89NNPQtXIWVlZOHHiBDw9PWFnZ4ekpCQcP34cO3bsIH48GhsbceDAAVhZWWHz5s1gMpkoLy+nRSwGADdu3ICfnx+2bNkCfX19XLlyBbt27cLJkyeF/p/Pnj2Dm5sbhgwZAhkZGdy4cQPffvstjh07RiyN4y4J5E7JhIeHY+/evfjzzz8pXzEUEBCAoKAgbNiwAbq6uvDx8cHevXtx5MgRoceipaUF2tracHFxEbnaxNDQkFiyDNCXcfDJkycICAjAnDlzYGJigpiYGJw6dQrbt2/nyxgKdC1nPH36NJycnLBw4ULk5ubC19cXSkpKhKxPQUEBkydPhra2NqSkpPDy5UtcvXoVSkpKtDwAmZmZwdXVFQ8fPkRpaSmsra0xY8YMXLt2jS97K9D1Xb5+/RpJSUkkwWD3Mu7u7mhubkZYWBgaGxuhpKREee4ZXgwNDWFra4vExERUVlbCzMwM48aNw61btwRmOFVUVISbmxuys7MRGxsLTU1N2Nvbo6WlBYWFhQC6lgAbGRkhPj6eWA47ZswY3L17l3YDbm94X52KefPmoaqqCnv27EFJSQmGDRuGkJAQ4l5RUlJCmlI8ceIE2tvbsWHDBmzYsIH4fNmyZbSuHqNFfQ4Aa9euxbhx42BsbAw7Ozvs27cPBQUFQi2VVPDw4UM4ODjA0dHxrVTVjo6OcHBw4MtS9i7V5x999BHu37+P+/fvo6SkBJcuXUJ1dTUmTpwocrvly5cjNjaW1PPnMm7cOCgpKeGPP/5AVlYWqqqqkJmZSetTDIfDwd27d+Hu7g57e3si6VJrayuRw0QQd+/ehbW1Ndzd3aGrqwt3d3cMGTKENOx369YtqKurY+XKlTA1NYWmpiasra1pCUDicDjw9/fH/PnzMXr0aBgbG2Pr1q1oaWkhadm7s337dsycORNmZmYwNDTEpk2b0NnZSSRqAroSYY0aNQoGBgYwMDDAsmXLICcn16tMlz1tQ3BwMObMmQMnJycMGjQIn3/+OVpaWkQqsc3NzYnEV6I60ZKSklBTUyNedD0F3b9/H46OjnB2dgaLxYKnpydUVVUFPrkDXaOWqqqq8PT0BIvFgrOzMxwdHUnHzdzcHDY2NmCxWNDU1MS4ceOgq6tLW5yEjY0N0tLSkJaWhpqaGjx69AgNDQ2wtrYWWL6hoQGPHj1CZmam0E6CpaUlZGVlcefOHZSVlaGhoQGlpaUiH0L6ipWVFXJycpCTk4O6ujo8efIETU1NQrUN5ubmaGxsxJMnT1BXV4ecnBzk5uaSOm7GxsZ4+fIlSkpK0NjYiKysLJSWltI+uv0h8dlnnyEvLw8tLS1ITEwkJdY7d+4c6dyOjIwEh8Phe9G9HP2dxFQ0Njbi7NmzMDExoS1pVHt7O4qKigSqqrvrkrnk5+cLLF9YWMinPv/555+xf/9+nDt3jiRbohIpKSmhKWpFOVbGjBkDLS0t+Pv7C/z7yJEjkZWVhSVLlhBmyZkzZ9La466srERtbS3JbMlgMGBpaSmw48MlOzubtA0ADB06lJT++unTpzA2NsbRo0exefNm/PDDDz1ap/02lJaWgs1mk6ZfGAwGbGxskJqa2uP9tLS0oKOjQ6g3pKOjA1FRUXj9+jWGDBnS53rzUl5ejpqaGlIiMQaDAWtra0qMnaWlpVi7di0+++wz/P7776TsiFTR3t6OwsJC0vQR0PWDKuxBJT8/X2D5goICgZl9ORwOMjIyUFFRQYvGnZu9k/tkzqWwsPCNwXaiMDY2Rnl5OcaMGYMlS5bg008/ha2tLW3XN7cT2X1aorS0VGiCKg0NDb7yJSUlUFdXJ+opKSlJSl8PdF0XvInZ+gNi9blo+jT9wVWf8/L1118TQ6FHjx7F9u3b0djYCCsrK4SFhZFS5PLSV0spV1UtSPsrLB5BkMCHV7fNZDKhra2NTz/9FCwWCy0tLYiOjsbx48fxxRdfUJ7hTVlZGVJSUnxCIFGSHhaLhU8//RT79+/nuyC5aGtrQ1NTEzExMTh06BB0dHSwZMkSSEpKktIAUwlXCCRI1SxKxlZbWytwG97vpKKiAhEREZg6dSrc3d2Rm5uLy5cvg8FgiAxaehu4WT+7T5+pqqqivLy8x/s5e/YsNDQ0+DLZ5ebmYuvWrWhtbYW8vDy+++47oW6Rt0WYplpFRQWVlZV92reFhQU+//xz6Orqora2Fj4+Pti1axd+//13Skf0uFrv3qjo6+rq+DoVvCp67nnW3NyMPXv2oL29HZKSkpgzZw7fdlQgJycHSUlJPktqc3Nzn6bulJWVoaenh6ysLNy6dQsqKioYM2YMJCQkkJSU1Ndq8yEjI0NMy/DS0tIi1PEkJyfHd39//fo1JCUlISsri9evX6O0tBSWlpYoLy9HQ0MD4Rjpbz++/a0+/Q1a1eeLFi3ClClTUFJSgoMHD2Lu3LmIjo4WeOIJs5TOnz+/L1XstTK3J+rzP//8k1L1ubA6cBFWfwkJCXh7e8Pf31/k06GEhATq6upw9uxZcDgc5OfnQ1VVFdOnT6esUxEbG0sECAFdmd4E1b0nx+NNf+dwODA2NoaXlxeA/5NKRURE9LlTERERQVoCzD0n+6Jivn79OqKiovDLL7/wdaoNDAzw119/oaGhAdHR0fjtt9/w66+/9qlj8eDBA5w4cYJ4v3PnToFtoILunaTBgwfj888/R2RkJGbNmkX5/9fbNvSkvKysLDGllZmZicDAQGhoaIgcHaSaviQ2lpCQQHNzM+7fvw8Oh4PKykooKChgxIgRtHQq3pY33deSkpIwatQozJgxA0DXQ19ubm6fZWhUI7aUioZW9Tk3Q5iFhQWcnZ2hpqYGPz8/LFiwgK+soCQgt2/f7nFduKrq7k8tolTVgp5yGhoaeqQ+7+sTniDq6+vR0dHB90SprKzMpwIGuoIzTU1NYWRkhMWLFwPoulAlJSVx5swZHDx4EKmpqaipqUFHRwfpoi4uLoaqqiqkpKSESt56w4gRI7B7927iPa++nfcp/00aZhUVlTdqj1VUVPgU27q6uiQ3xdvi5OREekrlKp65wa1curdLGD4+Prh27Rp++ukngTdHBoNBtGXw4MHIzMxEQEAANm7c+NZtcHBwIF2X3GNRU1NDCmjsaRt6g5ycHAYNGoSSkhJK98vVegu6XoWNiDCZTKHXN69CXVJSkhh11NfXR1lZGcLDwynvVLx+/RqdnZ18gbHy8vJ8oxe9gTtKy3t919TUEN+ZsBHMt6W1tRWdnZ18D4fcEQdBvH79WmD5zs5OYgSDG+PDHb1obm7GiBEj0NjYSGn9xdDLO01+xeFwhLoXBCUB6c0KC2lpaejr6yMrK4uUiz8rK0toEJSRkRHfvHhmZiYMDAxEqs9LSkr6NAcqjI6ODuTl5WHo0KGkJ4yhQ4cKNMs1NzcTEh4uEydOhLW1Nf766y9ieVdmZiZcXFwgISFB3Hh0dHTAZrMp6VAAXTdG3pslh8OBiooKXr58SUQnt7e3Iz09HZ988onQ/ZiZmeHly5eYOnUq8dmLFy9IN3gLCwu++dmysjJoaGj0uR1ckyVvO9TU1JCUlAQzMzMAXR2N58+fY8WKFSL3dePGDVy5cgX79u3rsbKew+EQHZm3RdCxUFVVxbNnz4iOTVtbG16+fEl0Rqmira0NRUVFlMeFSEtLw8DAABkZGaSVWRkZGXwxOFyMjIzw8uVL0mfp6ekwNDR84wo0qq4LXjo7O1FRUQEDAwNSHEj3972lrKyMrwOkoqJCTBlRTWdnJ9hsNnR0dEjxZd3f81JVVcX3IKCjo4Pq6mq+EYzOzk40NzdDQkICBgYGtAaUvw3i6Q/R0KI+z8nJwYEDB5CYmIhXr14hJiYGc+fOhby8PDG0RQdjxoxBfHw84uPjUV5ejps3b/Kpqnk1vN1V1fHx8UhISMDYsWOJMlz1eVVVFYqLi3Hjxg0UFxeTcllQSWhoKNzc3DB27Fjo6upiwYIF0NDQQEREBADgk08+wZo1awB0/VgUFRWRXvX19cSNnRstHhERAUVFRSxatAgsFgsjRozAzJkzce/ePVraAHRdeJMnT0ZwcDCSkpJQWFiIf/75BzIyMiRt/OnTp+Hj40O8nzx5Ml68eIGQkBCUlJQgJCQEqampmDJlClFmypQppPwisbGxiIqKeuMKmbdth6enJ65du4ZHjx4hLy8Phw4dgqysLEmIdfDgQdLy6uvXr+P8+fPYvHkztLW1UV1djerqatIT6blz55CSkoKysjLk5ubi33//xfPnzykXbUlISMDd3R2+vr6Ii4vDq1ev8Pfff0NWVpakxP7zzz9x8eJF4n1bWxtyc3ORm5uL9vZ2VFVVITc3lzQKcf78ebx48QJlZWXIzMzEb7/9hubmZlpkYePGjUNcXBzi4uJQVlaGgIAAsNlsQrUdHByMS5cuEeVdXFzAZrMREBCAsrIyxMXF4fHjx6S6hYeHIz09HVVVVSgrK0NUVBQSEhL48qJQxfPnz2FlZQVLS0uoqqrCxcUFSkpKROfH0dGRpDIHuoIcNTQ0wGAwICcnBw0NDdII04sXLyArK4vRo0dDRUUFgwYNgq2tLV68eEFLGwAgLS0NpqamMDExAZPJhK2tLRQUFIiA6uHDh5Ou86ysLCgqKmLkyJFgMpkwMTGBqakpaaWTuro6DAwMoKioCC0tLYwfPx4SEhK9Coh+F4gDNUVDi/r83r17ePDgAQ4fPgw2mw0Wi4Vx48bh0aNHtOYdHzFiBJqamghVtY6ODklVXVdXx6eqXrFiBYKCghATE0OoqnmfhJqbm+Hr60tSn3t7e9O2iuXx48dQUlKCh4cHVFRUUFRUhEOHDhHBjaqqqr1+Iq+ursbBgwexcOFC7Nu3D2w2G2FhYQgODqajCQTTp09HW1sbLly4gMbGRpiammLLli2kp+jq6mrSxWVubg5vb2/4+fnB398f2tra8Pb2JkXjm5iYYMOGDfDx8UFgYCC0tLQwf/582jp6n3zyCVpaWvD3338Tya/27dtHGtGoqKggzbUGBwejvb0d+/fvJ+1r4cKFxOhATU0NDh48iOrqaigqKsLExAR79uyh5QfNw8MDra2tOH36NBobG2Fubo5vv/2WdCwqKyv5NNXbt28n3t+8eRM3b96EtbU1EWtSVVWFI0eOEFNUgwcPxk8//URLxL6trS2ampoQFhZG5DFYvXo1MS3V/frW0NDA6tWrERAQgOjoaKioqMDT05OU76G1tRW+vr6oqakBg8GAtrY2Fi5cSJsaOjs7G7KysrC3t4eCggKqq6tx69YtIkeFgoIC33Qt78ielpYWLCwsUF9fT3SgGhsbERISAhcXF3zyySdobGxESkoKnj59SksbgK7EaLKyshg2bBjk5ORQW1uL+/fvEzkq5OXlSVNMjY2NiIqKgq2tLSwsLNDc3Ew8bHCRkpKCjY0NlJSU0N7ejuLiYsTExPR55E7Mu6Vfq8/9/PzedxUoISAg4H1XgRLE7o/+w0CYZx4o7g+6lpi/awaC+6Ovgf094dSpU5TtizvqPJDo10IxMWLEiBEjpj8hXv0hGvG3I0aMGDFixIihhH49UkF1cqn3BdXL9t4XopJWfSj0RMz2IbBw4cL3XYU+0z3J24fKQJiKAsg5hsQIZ6AGWFJFv+5UiBEjRowYMf0JcadCNLSpz7lwOBzMmDEDt2/fhp+fHzw9Pd/2v+wRXN02NxLZxMSkR7rtxMREkm579uzZpCj8gIAA3Lx5k7QNk8nEoUOHKG/D6NGjMXHiRDCZTJSWlsLPzw85OTkCy5qYmGDWrFlgsVhgMBiESrm7C4O7nHf48OFE1Lm/vz+ty7W49eBq6D/++GOR2fGys7MRFBREaOjd3NyI5YLdefr0KS5duoShQ4di2bJldDUBVlZWsLGxgby8PGpqaojljIKQl5eHo6MjNDU1wWQy8fLlSz55mpGREUaMGAFlZWVISkqirq4OKSkpIn0oVMDhcHD8+HH4+Pigrq4ONjY22LlzZ48TPN26dQs7duzAhAkTcPjwYdLfysrKcPjwYURHR6OlpQVGRkb44YcfhOaH6Ws7AgMDERUVhaamJpiamvbo+k5ISCBd33PmzOFbZcNms3Hjxg08f/4cbW1tYLFYWL58OYyNjSltg7m5OSwtLUnKcFHJ9LS0tDBy5EhCGZ6WlsZ3vgwePBhmZmZQUFBAa2srCgoK8OzZM1ryVHDhcDgICQlBdHQ0mpubYWRkhHnz5r0xGPrJkycIDg5GZWUlNDU1MWvWLJKXJisrC3fv3sWrV69QV1eHNWvWkP4upn9Dm/qcy+HDh99pz+727dsICwvDihUroKOjg6CgIBw6dAg//fST0Lz02dnZhG7b1tYWT548wYkTJ/D111+TljLq6elh69atxHs6AnZsbW0xe/Zs3LhxA7m5uXB1dYW3tzcOHDggUP/b2tqKhw8fori4GK2trTAxMcHcuXPR2tqKmJgYAF1LtdavX4/6+nqcO3cONTU1UFVVFZqIjAqePn2KmzdvwtPTk9DQnzlzBlu3bhWoqa6ursY///wDJycnzJ8/H3l5efD394eSkhJpiS/QdfMPDg6mPX2viYkJnJycEBMTg7KyMlhZWWHq1Knw9fUVOOQtJSWF169fIzk5WWhCppaWFiQnJ6OmpgadnZ0wNDTE2LFj8fr1a1pXEZw9exb//fcf9uzZAyMjI5w6dQrr1q1DQEAAaemfIIqLi3Ho0CGBS13r6uqwfPlyODg44O+//4a6ujoKCwtpM/neunULd+7cwcqVK8FisRAUFITffvsNP/30k1CFe1ZWFnF929nZISkpCcePH8eOHTuI67uxsREHDhyAlZUVNm/eDCaTifLy8j45OQRhaGiIkSNHIikpCRUVFTA3N8e4ceNw+/ZtocrwcePGIScnB7GxsdDS0oKdnR1JGW5kZIThw4fj8ePHqKyshLKyMpEjgs5lpXfv3kVERAQWL14MbW1t3L59G3/++Se+//57offanJwcnD17Fu7u7hgxYgSSk5Nx5swZbNmyhei8tbS0QF9fH87Ozjh9+jRt9X9bxCMVoqFNfQ4AycnJOHToEP75558+V7QndNdt6+vrY+XKlW/UbYeFhcHa2hozZsyArq4uZsyYASsrK9y9e5dUTkpKikg9rqKiQsuNc/z48YiLi0NsbCzKysrg5+eHmpoaUpIiXoqKipCUlESojhMTE4nENFycnJygoKCAM2fOIDc3F2w2G7m5uSguLqa8/lwePHiAUaNGwcnJiRilUFVVFaqhj42NhZqaGj7++GOwWCw4OTnBwcGBb8Sls7MTly9fxpQpU2ifAx42bBgyMjKQkZGB2tpaxMXFEXI8QTQ0NCAuLg5ZWVlCNdWlpaXIz89HbW0t6uvr8fLlS1RXV9OSoZULh8PBxYsXsXr1akyePBkWFhbYt28fXr9+jZCQEJHbdnR0YOfOnVi/fj0MDAz4/v7PP/+AxWJh7969sLGxgb6+PpycnGjJ49L9+jYwMMCqVaveeH3fvXsX1tbWcHd3h66uLtzd3TFkyBCEhYURZW7dugV1dXWsXLkSpqam0NTUhLW1NeV5dSwtLZGbm4ucnBzU19fjyZMnaG5uJrK1dsfMzAxNTU148uQJ6uvrCWU4byp5DQ0NVFZW4tWrV2hqakJZWRlevXpF6/XB4XAQERGBjz76CCNHjoSenh6WLFmCtrY2JCQkCN0uMjISVlZW+Oijj6Cjo4OPPvoIlpaWRHI/oCuD8KxZszBy5Eja6t8XxMmvREPb6o+mpiYsWLAAf/31F3R0dOj6b0iI0m3zqrO7k5OTwzdU2123DXQN827duhU7duzAiRMniDTYVCElJQUDAwNSljmgK3tdT4dg9fX1YWJiQhoeHTZsGPLy8vDJJ59g7969+PrrrzF58mTaTmquhr57amoLCwuRmuruGnpLS0s+Df3du3ehqKgIR0dHyuvNi6SkJDQ0NPg6XkVFRZT+0Ojq6kJFRYUv7TiVFBUVobKykjSVJCMjA3t7eyQnJ4vc9sSJE1BTU8OcOXME/j0qKgpDhw7Ftm3bMH78eMydO5eUIZVKRF3foqaPsrOz+UaOul/fT58+hbGxMY4ePYrNmzfjhx9+4OvQ9hWqlOGlpaUkZXhFRQXU1NSIToSioiJ0dXVpfWioqqpCXV0dqYPNYDBgbm4udKoW6LLydu+UDxkyROQ2/Q1JSUnKXgMR2tTnX375JVxdXeHh4dGjfQlSn7e2tgpVpQuiL7ptQVpo3uh0U1NTrFq1CiwWC3V1dQgKCsKBAwewZ88eocKy3qKoqAgpKSk+CdKbJFwA8MMPP0BJSQmSkpK4ffs2aURAQ0MDFhYWSExMxIkTJ6ClpYVPPvkEUlJSCA0NpaTuvAjTVCsrKwvVVNfX1/ON/HTXVOfl5SE+Ph6bN2+mvM7dkZWVpUVTDXTdfOfPnw8pKSl0dnYiJiaG1h8A7nx990ysgjpNvDx58gR+fn64du2a0DKFhYW4du0alixZglWrViElJYWwsVJtKe3L9S1oG97ru6KiAhEREZg6dSrc3d2Rm5uLy5cvg8Fg9Nl8y0WYMlyQbIuLvLw8X6eiuzK8oKAAcnJymDhxIiEUzMrK4ns4oRLud9f9mlVWVkZ1dbXI7QRtI+y+IObDgxb1eWBgIO7duydQgiUMQerz5cuXY+XKlUK3iY2NxX///Ue837Rpk8Byb5M0tPs23ef1zczMsHPnTjx69Igkv6IDXhGYMP744w/IysrCyMgIs2bNQmVlJSElk5CQQENDA65evQoOh4PCwkKoqKhgwoQJtHQqeOvNS2819Lz7ef36NS5fvgwvL683xgBQiSBdc1+T0La1tcHf358wlDo6OqK+vp6y0Yrg4GDs3buXeP/XX38B6N3xaGxsxDfffIPdu3cLjIHh0tnZiaFDhxLX3pAhQ5CdnY1r1671uVMRGxuL8+fPE++/+OKLXreDy5v+zuFwYGxsDC8vLwBdcQrFxcWIiIigrFNBFd3boqWlhSFDhiApKQlVVVVQUlKCra0trK2t+YRqb0t8fDwuX75MvF+/fr3Augj7rDd/7+986PWnG1rU5/fu3UN2djZffgYvLy+MHTsWkZGRfNsIUp/Hx8eL/P9HjhxJCtbjKp7r6uoo1213R1ZWltAkU0VjYyM6OjoEPrG/qSfPfTooKSmBsrIypk2bRnQq6urq+NTnZWVlUFFRoUx9zosoTbWwUR1BTyu8GvqysjKw2WycO3eO+Du3PTt27MBXX31FiaWUS0tLCzo7O/lGJeTk5PqkqebCbWt1dTVUVFQwfPhwyjoV48ePJ3WCufEdlZWVJCdHdXW10O+soKAAxcXFpI46dyWBnZ0dAgICYGhoCC0tLVL8DtA1qtc9HultGDFiBHbv3k28517f3ZXtVFzfKioqfBZNXV1dJCYm9qUJJIQpw+Xk5IQqw5ubm9+oDLexsUF+fj4xhVBbWwtpaWk4ODhQ1qmwsbEhTcHy3mt5R3kFjTjy0n2EqCfb9DfEnQrR0JKnYseOHXyeCBsbG/z+++9Cn14Eqc/fNPUhJydHuuC4uu0XL15g0KBBAHqm2zY1NeXTbb98+VLkcru2tjaUlpb2WGndEzo6OlBYWAhLS0s8f/6c+NzS0hIpKSk93o+EhASkpf/v0Obm5sLe3p70lK2lpYXa2lpaFM9cDX1mZiZJQ5+ZmdkrTXVGRgahodfS0uLrdIaGhqKlpQUff/wx5d6Czs5OQtecn59PfK6np0e5s0JCQuKNKu7eoKioSBrN4XA40NTURGxsLKEkb2trQ2JiIvH03x0TExPcuHGD9Nnff/+NxsZGbN++nYiTGjlyJF+cTH5+Pt8P9NsgSOGuoqKCly9fwsjICEDPrm8zMzO+6/vFixek69vCwoKvU1dWVkZpR1WYMpzFYvVJGS4lJcU3esZ9T8XIGiD4XstkMpGWlkYE5ba3tyMrK0vklLeJiQnS0tJIRuHugeViPmxoUZ/r6Ohg2LBhpBcADBo0iNZlgFzddkhICJKSklBUVCRQt33mzBk+3fbLly9x69YtlJSU4NatW0hNTcXkyZOJMteuXUN6ejoqKiqQk5ODY8eOobm5mfKh0cjISDg7OxOrJjw9PaGmpobo6GgAwMyZM7Fo0SKi/JgxYzB06FBoampCU1OTUCfzRmBHR0dDQUEBs2fPhpaWFqytrTFlyhQ8fPiQ0rrzMnbsWDx+/Bjx8fEoKytDYGAgampqCJPorVu3cOXKFaK8s7Mz2Gw2bt68ibKyMkJh7+bmBqArDqH7SiM5OTliBRJvJ4oqUlJSMHjwYFhYWEBFRQWOjo5QUlIi5qrt7e0xbtw40jbq6upQV1cnNNXq6uqkp+rhw4dDT08PysrKUFFRwdChQ2Fubk5rngoJCQksWrQIZ86cQXh4ODIzM/Hdd99BTk4OM2bMIMrt2rULR44cAdDVybewsCC9lJWVoaioCAsLCzAYDADA4sWL8fz5c5w+fRqvXr1CSEgIbty4gXnz5tHSjsmTJyM4OJgwXAq6vk+fPs13fb948QIhISEoKSlBSEgIUlNTMWXKFKLMlClTkJOTg+DgYJSVlSE2NhZRUVGkHz8qSE9Ph4mJCUxMTKCsrIyRI0dCQUGBOP42NjaktmRnZxPKcGVlZWLb9PR0okxxcTHMzc1haGgIRUVFsFgsDBs2DMXFxZR0KAQhISGBCRMm4M6dO0hOTkZxcTH+++8/MBgMODg4EOXOnz9PEiqOHz8eaWlpCAsLQ2lpKcLCwpCWlkbSvXOXy3KXzFZVVaGwsFBkrMa7RLz6QzS0qM/pDBB6E9OmTUNraysuXrxI0m3z9rKrqqr4dNtr166Fv78//P39oaWlhbVr15J6z2w2GydPnkRDQwOUlZVhamqKb775htInGaArOE5BQQEfffQRmEwmSkpKcOLECbDZbABdw4e8c9wSEhKYOXMm1NXV0dnZicrKSgQFBeHRo0dEmZqaGhw/fhyenp7Yvn07amtrERUVhfDwcErrzsvIkSPR1NSEu3fvoq6uDjo6Oli5cqVIDf3KlStx8+ZNPHr0CEwmEx9//DFfLMu7JDc3F7KyssSNn81m486dO0SOCgUFBb74Dt7kbpqamjAzM0N9fT2uX78OoGsUx8XFBYqKiujo6EBNTQ2ioqKQm5tLa1tWrFiBlpYW7N+/n0h+dezYMVL9S0tLex2RPmzYMBw6dAh//PEHTpw4AX19fWzfvh3u7u5UNwEAMH36dLS1teHChQuk65t3RKO6uprv+vb29oafnx/8/f2hra0Nb29v0vVtYmKCDRs2wMfHB4GBgdDS0sL8+fOJTjBVcJXhQ4cOJZThDx48ICnDeafcGhsbcf/+fdja2sLc3BzNzc148uQJSRnOHeHjJmlraWlBcXExabSTDiZPnozW1lZcvXoVTU1NMDY2xueff06613Y/FqamplixYgWCgoIQFBQETU1NrFy5kjS1kp+fjz/++IN47+vrC6BrafySJUtobVNPGKirNqiiX6vPHzx48L6rQAl0LbF71/A+TXyoDAR/CTAw3B+i8hl8SAwU9flAcH/wjj7RBe8Ia195F6r2d43Y/SFGjBgxYsT0kIE6bUEV4k6FGDFixIgR00PEnQrR9OtORfdlYB8qH3300fuuAiW8z1gZquivqX97S0FBwfuuQp8ZKFNR3ZfOf6icOXPmfVehz7yL6Q8xoqHNUjp+/Hi+NLfz5s2jdD5KENHR0YiMjCSCAz08PEQuV8rOzkZgYCBKS0vBZDIxYcIE0oqOZ8+eITw8HJWVlejs7ISmpibc3NxIEc5U8/DhQ9y7d49ow+zZs4W6AYAuYZK/vz9KS0uhoqKCiRMnYvTo0cTfuStaCgoKwGaz4enpifHjx9NWfy7Dhw+Hg4MDFBUVUVVVhaioKKHzz+bm5hg+fDi0tLQgJSWFqqoqxMbGkpZzcsu5uroSuQeio6PfieEzKCgIDx8+JALSFixY8MZlk0lJSQgMDCRsjB4eHrC1tSX+HhUVhfv37xM/rlwvBe8yXCrbcOnSJYSGhqKhoQGDBw/G+vXriaWZgrh9+zbu3btHHANzc3MsXbqU5J1ISUmBj48PsrOzUV1djV27dgk1y1LBQDDfPnjwAOHh4cT17eXlJfL6zszMhJ+fH3F9T5o0ieQC4q5oKSgoQHV1NWbPnv1O4p+mTJmCWbNmQVVVFYWFhTh//nyPHjwGDx6M3bt3o6CgADt27CA+l5KSgoeHB9zc3KCmpoaSkhJcunTpjank3zXikQrR9CmMddq0aSgpKSG9eLOurVmzhvS3EydO9LnConjy5AkCAgIwadIkbNmyBSYmJjh16hSxcqI7VVVVOH36NExMTLBlyxZMmjQJ/v7+ePbsGVFGQUEBkydPxqZNm7B161aMGjUKV69epe2pPSkpCX5+fpgyZQq2bdsGU1NT0uoPQW04efIkTE1NsW3bNkyePBm+vr6kC7GtrQ0aGhqYNWvWG9N9U8XgwYMxfvx4PH78GBcvXkRRURE8PT2FJrnR19fHq1ev4O/vj0uXLqGwsBAeHh6kZE3cH93U1FRcuHABqampcHd3p90tc+fOHYSHh2P+/PnYsWMHVFRUcOTIEaEJi4Aun8zp06fh7OyMb7/9Fs7Ozjh16hRplYeamho8PT2xc+dO7Ny5E5aWljh27BgtKbt9fHzg7++PdevW4dChQ1BTU8N3330n0IzJ5fnz53Bzc8OBAwdw8OBBaGlp4fvvvydpul+/fg1TU1OsW7eO8jp3h2u+nThxIr744guYmJjgzJkzQq8NrvnWxMQEX3zxBSZMmIDAwECBqyLelfk2KSkJvr6+mDp1KrZv3w4zMzMcO3ZM6HLJqqoqnDhxAmZmZti+fTumTJkCHx8fkn20tbX1nV/fLi4uWLZsGfz8/LBjxw6kpaVhx44db1wNJy8vjw0bNgjMuzNv3jxMnjwZZ8+exbZt23D37l1s3bqVcvV8XxEvKRUNrZZSBQUF0t+oTlDUnfv378PR0RHOzs5EjgdVVVXS8kpeYmJioKqqCk9PT7BYLDg7O8PR0ZGU8dPc3Bw2NjZgsVjQ1NTEuHHjoKurS9sSwMjISDg5OcHFxQU6OjqYM2cOVFVVheaUiI6OhqqqKubMmQMdHR24uLjAyckJ9+7dI8oMGjQIHh4esLOzozTJkijs7OyQkpKClJQUVFdXE0+Xw4cPF1g+KioKCQkJKCsrQ01NDaKjo1FTU0MaZbK1tUV+fj7i4+PBZrMRHx+PgoIC0tM/1XA4HISHh2P69OmwtbWFvr4+li1bhtbWVjx+/FjoduHh4RgyZAimTZsGHR0dTJs2DVZWVqRlvMOHDyfOLe75KisrS/m5xeFwEBAQgHnz5sHV1RXGxsbYsmULWlpaREqzvvrqK7i7u8PU1BSGhobYuHEjOjs7SR1WBwcHLFmy5J2ksh4I5tuIiAg4OzvD1dWVGKVQU1MTen0/fPgQampq8PLygo6ODlxdXeHs7Ey6vo2MjODp6Ql7e3ta8rUIwt3dHREREYiIiEBxcTHOnz+PqqqqN04/rFmzBtHR0cjMzOT725gxY+Dv74+nT5+ivLwcYWFhSE5Opm158tsiFoqJhtZWXbx4EZqamoTFkE5pTHt7O5GNkhdLS0uRZkxB5QsKCgRmmuRwOMjIyEBFRQUtGeC4behu8bOyshLahry8PIHlhbXhXSApKQkWi8U3dfHq1ateZVpkMBik0QBdXV2+febl5VGSvVEYlZWVqKurIzJRcutlYWEh0qyYk5ND2gYArK2thW7T2dmJ+Ph4tLa2Uv60zE1xztv5YjAYGDZsGFJTU3u8n5aWFoFp5N8FA8F8297ejoKCAoHXq7COpLDr+9WrV+/t+paSkoKJiQlpRBfomioWlWHYzc0NLBaLL1MrFwaDgba2NtJnra2tfO0X07+hzVK6aNEimJiYQEdHBykpKdi5cyeSk5MRFhbWpwoLQ5gZU5Q3o66ujq9T0d2MCXTl39+zZw/a29shKSmJOXPm8G1HZRsEWfy658vnIihvvrKyMjo7O9HQ0ED76JAg5OXlISkpyTe03tjYKHIOnxd7e3swGAxkZGQQnykqKvLts6mpqc/WUFFwv3dBlss32RjfZMYEunIc/Prrr2hra4OsrCy8vb0p7yRxpwe6BxSqqqqivLy8x/v5999/oaGh8V6CXQeC+VbU9S3qHtXfrm8mkwkpKSm+QPruThZedHR0sGDBAvz444+EQ6Y7z549w4wZM5CamoqysjIMGzYMDg4O/e6JfqBOW1AFLZZSoGuYi8uwYcNgYWEBBwcHJCUlwc7Ojm9fgtTnbW1tRDrgntLbA96T8rKysti6dStaWlqQmZmJwMBAaGhoiHSDUElv7Z68ef/7Ez2tj6WlJVxcXBAYGPhGeRfVbYyLi8OlS5eI9xs2bBD4//QkZ1xPtmGxWNi1axeam5uRlJSEf//9F1u2bOlTxyIiIgJ///038Z4r5eqLNfbGjRuIiorCgQMH3ujkoZOBYL59m3OpJ/t51wiqt6DPJCQksHHjRty4cQMlJSVC93fu3DmsXbsWhw4dAofDQVlZGSIjI99JUHlveN/fe3+HFkupIOzs7MBgMJCZmSmwUyFIfb5gwYIeZw4UZcYUNlzLZDKFmjF5bzKSkpLQ1NQEAMJMGh4eTnmn4m3aIMru+S5vlLw0NzcLNHwqKCiIDAwEugI8p0yZguDgYD5xV2NjI98+5eXl37jP3jBixAiB5tva2lo+G6OooDgmk8n3JCdoG2lpaWhrawPomhvPz89HREQEye/SW5ycnEgjadwhZTabTYoZEPVkyYuvry+uX7+Offv20R7IKIyBYL7ltqH7aFVv71H19fXv9frmWo+7nzuCbLBA1zVqZmYGY2NjrFixAkDXD7OkpCQuXryI/fv348WLF6ivr8dvv/0GBoMBJSUlsNlsLFy4sFejaWLeP+8sT8WLFy/Q1tbG5wrhIkh93hs3hbS0NAwMDJCRkUHyRWRkZPTKjJmeng5DQ8M3BjTSZfc0MDBAeno6KaAxPT1d6DJDY2NjvHjxgvQZ1xz4roIyu9PZ2YmysjIYGRmRlnsOGjRI5PJPS0tLTJ06FSEhIQLnmEtKSmBkZIQnT54QnxkZGVG6WkKYjTE1NZVkvs3MzMTs2bOF7sfU1JRPSpeamvrGWBwOh8M3r9xbFBQUSJ0vDocDNTU1PHnyhFi62NbWhpSUFCxfvlzkvnx8fHD16lXs2bOHLz7hXTIQzLfS0tIwNDREeno6RowYQXyelpYm1HFjbGzMt1IiLS0NgwYNem/Xd0dHB3Jzc2FjY4P4+HjicxsbG4Gp15ubm7Ft2zbSZ1OnTsXQoUPx+++/o6KigvS3trY2sNlsSElJwdHRUWgg7vtCPFIhmj51KriWUtIOpaVRW1uLixcvYsaMGdDU1MTLly+xdetW2NrakvIn8CJIfd7bqY9x48bh8uXLMDAwgLGxMWJjY8Fms4l16cHBwaitrSVGP1xcXBAdHY2AgAA4OzsjLy8Pjx8/xuLFi4l9hoeHw8DAAJqammhvb0daWhoSEhLg5eXVq7r1lPHjx+PixYswNDSEsbExYmJiwGazie/t5s2bqK2tJeo4evRoPHz4EH5+fnBxcUFeXh7i4uKwdOlSYp/t7e3Ecero6EBtbS0KCwshKytLWrJJJUlJSZg2bRrKyspQUlICGxsbKCsrE8Fdo0ePhpKSEkJDQwF0dSg++ugjREZGoqSkhPhRbG9vR2trK4CuJcNz586Fg4MDsrOzYWZmhkGDBuHatWu0tAHouoFMmjQJt2/fhra2NrS1tXH79m3IyMiQAvvOnj0LVVVVoqMxceJE/PbbbwgNDcWIESOQnJyM1NRUfPXVV8Q2/v7+GDp0KNTU1NDS0oL4+HhkZGRg48aNlLfBw8MD169fh56eHvT09HD9+nXIysoSFlgA+O2336ChoUF0NG7cuIELFy7gq6++AovFImIzFf88OQAAr5dJREFU5OTkCIFXc3MzaUi7rKwMOTk5UFJSIkZgqGLs2LG4evUqDAwMMGjQIMTFxfGZb2trawmfgrOzM6Kjo3Hz5k04Ojri1atXiI+PJ65/rvmWF26Hkq5lyhMmTMB///0HQ0NDmJiY4NGjR2Cz2UTeicDAQNTW1hLirDFjxuDBgwfw9fWFq6srcnNzERsbS8qjwXt9t7e3v5PrOzg4GBs2bEBOTg4yMjIwefJkaGpq4u7duwC6nBbq6uo4evQoOBwOSYAGdI12tLW1kT43NzeHmpoa8vPzoa6ujk8++QQSEhIIDAykpQ1vS3+L8ehv0GIpDQsLQ3h4OI4cOYKGhgYYGhrC3d0du3fvprV3bWtri6amJoSFhaGurg66urpYvXo1MeTb3YypoaGB1atXIyAgANHR0VBRUYGnpydplKC1tRW+vr6oqakBg8GAtrY2Fi5cSNsyRjs7OzQ1NSE0NJRog7e3N6kNvOvyNTQ0CMPqw4cPoaKigjlz5pCehGpra3Hw4EHiPXcpmJmZGeU/YFwyMjIgJycHJycnIvmVv78/MZSrqKhIGvK1sbGBlJQUJk2ahEmTJhGfv3jxAnfu3AHwf0l+XF1d4erqipqaGoSEhPB1bKlm6tSpaG1txeXLl9HU1AQTExNs2rRJpI3RzMwMq1atQmBgIGG9XLNmDWn6oK6uDmfPnkVdXR3k5eWhr6+PjRs3wtramvI2eHl5oaWlBceOHUNDQwMsLS2xZ88e0ohGRUUF6YYZEhKC9vZ2HDhwgLSvBQsWENMzmZmZ+Oabb4i/nT59GgAwadIkfPnll5S2YSCYb+3s7NDY2IjQ0FDU1tZCV1cX69atE3l9cw2rDx48gIqKCry8vEjBsrW1tfj111+J9/fu3cO9e/dgbm6OTZs20dKOmJgYKCkpwcvLC6qqqigoKMDPP/9M5DBRU1Mjpox7CoPBwLx586CtrY3Xr1/j6dOn+Pvvvymd3hRDP/3aUhoUFPS+q0AJ72uYkmrEabr7DwYGBu+7Cn2m+9TEhwpv5/JD5uzZs++7Cn2G7ozNALW/SzNnzqRsX/2Ffu3+ECNGjBgxYvoT4pgK0Ygnh8SIESNGjBgxlNCvRypmzZr1vqtACf7+/u+7CpTAKzH6UOkeaf6hMhCmokRJtD4kRKVr/5AQlkJfDJn3OVJx9OhR/O9//0NJSQmGDh2Kw4cPY+zYsULLR0VFYcuWLXjx4gX09PSwfft22j094pEKMWLEiBEjpoe8L6HY1atXsXnzZuzatQtPnjzB2LFjMX36dL58Plxyc3MxY8YMjB07Fk+ePME333yDTZs2wcfHh4qvQSi9HqngKs8PHDhA0tb6+/tj9uzZ4HA4eP36NdatW4fExESkpqZi5syZ7+xpff369fjqq6+gq6uLFy9eYPPmzUJlPQDw2Wef4fPPP4exsTFevXqFn376Cf/99x+pzJw5c7B3716YmZkhOzsbu3btorU9A0HvDHTlR/D19UVERAQaGxthZmaG5cuXiwwyLCwshI+PD3Jzc1FZWYnFixdj2rRpfOXCwsIQEhKCmpoa6OvrY/HixbQ4Ah4+fIiIiAhitYGnp+cbNfQBAQEoLS0Fk8nk09DHxMQgPj6eWLFiYGAAd3f3Hqcvf1uio6MRGRlJnFMeHh4ic2ZkZ2cjMDCQOKfGjx9PkoY9f/4c4eHhqKysREdHB7S0tODm5gZ7e3ta28HhcHDt2jWEhYWhsbERFhYWWL16NZFDRBCvXr3ClStXkJOTg4qKCqxYsUJggFxVVRUuXLiApKQktLa2Qk9PD5999hnlIypWVlawsbGBvLw8ampqEBcXh7KyMoFl5eXl4ejoCE1NTTCZTLx8+RJxcXGkMkZGRhgxYgSUlZWJ5FopKSkic8JQgZ2dHZydnaGkpISKigrcvXsXBQUFAstaWlrCzs4OLBYLUlJSqKiowIMHD0j5aGxsbASOTv/yyy/vzXMiiPe1pPTQoUNYtWoVVq9eDQA4fPgwQkNDcezYMb4VWgBw/PhxDBo0CIcPHwYADBkyBAkJCTh48CBtKRGAtxypkJOTwy+//CJUOdzR0QF5eXls2rSJlPyHbubOnYvDhw/jp59+gq2tLR48eIBbt27B0NBQYPl169bhwIED+OGHHzB06FDs3r0bf//9N+mG4+zsjKtXr+K///7DiBEj8N9//+HatWu0yYcGgt6ZS1BQEG7duoVly5Zhz549UFVVxc8//ywy9XZLSwu0tLQwb948ocmHYmNjceHCBXz88cfYt28fLC0t8b///Y+k5KaCJ0+ewN/fn6ShP3nypEgN/alTpwgN/ZQpU+Dn50eyemZlZcHOzg4bNmzAF198ATU1NRw/fpy0FJJqnj59isDAQEyePBlffvklTE1Ncfr0aZHtOH36NExNTfHll19i0qRJCAgIIAmk5OXlMWnSJGzcuBFbt27FqFGjcPXqVaSnp9PWDqDr4eXmzZtYvXo1fvnlF6iqqmLPnj0iz6nW1lawWCwsXrxYaAbRhoYG7Nq1C1JSUvj2229x5MgRLFu2jPKslSYmJnByckJycjICAgJQVlaGqVOnCv1/pKSk8Pr1ayQnJwt1zbS0tCA5ORlBQUHw9/dHZmYmxo4dC319fUrrzsuQIUMwZcoUREdH48yZMygoKMC8efOEZpk1NDREbm4url69in/++Qf5+fmYO3cuWCwWqdzr169x5MgR0qs/dSiopqWlBXV1daRXd10F0HUOJyYmYurUqaTPp06dKtLC3b38Rx99hISEhD4n2BPFW3UqJk+eDB0dHYG9I6ArB8GxY8ewZs0a2pLICGLLli04c+YMzpw5g7S0NHz55ZcoKCjA+vXrBZZfsmQJTpw4gWvXrhEn/JkzZ/D1118TZTZv3oywsDD8/PPPSE9Px88//4zw8HDaBEQDQe8MdD1R3r59Gx4eHhg1ahQMDQ3h7e2N1tZWoRcB0DXPvnDhQri4uAhNfnbr1i2MHz8eEyZMgL6+PpYsWQINDY1eZWDtCVwNvbOzM1gsFmbPng1VVVVER0cLLP/o0SMiARaLxYKzszMcHR0RERFBlFmyZAnGjBkDfX19sFgszJs3DxwOR6AKmiqioqLg6OhInFMeHh5QVVVFTEyMwPIxMTFQU1ODh4cHcU6NGjWKdE6Zm5sT2nZNTU2MHTsWurq6lGvbeeFwOAgKCoKXlxecnZ0xaNAgbNy4ES0tLXjw4IHQ7czNzbFs2TKMGTNG6Dnl5+cHTU1NfP7557CwsIC2tjaGDx9O+f1r2LBhyMjIQEZGBmpraxEXF4fGxkaho2wNDQ2Ii4tDVlYWkQSuO6WlpcjPz0dtbS3q6+vx8uVLVFdX8/1gU4mjoyOSk5ORnJyMqqoqIneIIAUD0GWCjY2NRUlJCdhsNqKiolBdXS0wS2tjYyPp1d+gcvrjwIEDUFFRIb0E/a5yRwS7H1MWiyU0T09paanA8u3t7ZQ/gPHyVp0KKSkp7N+/H3/++SdfprT3BYPBgL29PZEoicudO3dIw7a8yMrKktTaQFeGQEdHR0hLd80Mubi48O0zNDRU6D77wkDQO3OpqKhAbW0tKdEQg8GAlZVVn35A29vbkZuby5e2fNiwYZT+MHM19N1ttJaWliI19N3Lv0lD39raKtCTQhXCzqnBgweLPKe6l7e0tBTaDm6nqLy8/I1pyPtCWVkZampqSIndGAwGhg4d2ucRkoSEBJiZmeHgwYNYsWIFtm3bRrlRWVJSEhoaGnxp5YuKiijNPqqrqwsVFRXaksJJSkpCV1cXOTk5pM9zc3N7lT9FRkaGb4RJRkYGGzZswOeff45PP/2U1o7R20Jlp2Lnzp2ora0lvXbu3Cny/+blTUI9YfI6OoNN33r1x+zZszFy5Ejs3r0bZ86cobJOb4WmpiakpaX55ibLysqEPm2EhoZi9erV8Pf3R1JSEuzt7bFy5UrIyMhAU1MTpaWl0NHR6dU++8JA0Dtz4Q7nd5/CUFFR6VMvub6+Hp2dnQL3S+UUwrvS0AcFBUFFRYXvR5wq3ka3Laod3HMK6OqA7927F+3t7ZCUlMScOXNoawfwf+eUIJFVX1f1lJWVITQ0FLNmzcKcOXOQlZWFf/75BwwGgzJLpqysLCQlJfl+SJubm/vcqWQwGJg/fz6kpKTQ2dmJmJgYSp04vCgoKEBSUpJvFKGxsbHH00VOTk5gMBhITU0lPquqqsLNmzdRUVEBWVlZjBo1CkuXLhU5VfehI0hPIQhNTU1ISUnxdRTLy8uFdrx0dHQElpeWlqZUlNedPi0p/eWXXzBx4kRs3bq1zxURpD5/G7onCJWQkBCqFt67dy90dHQQGxsLCQkJlJWV4dy5c/j6669JT2S92ScVfIh65+joaPzzzz/E++4CIS5UfW+Cvg86et+9/X9682QQHh6OJ0+eYMOGDb323PSV3h4HQeVlZWWxZcsWtLS0IDMzE4GBgVBXV6fM3nv//n2cOHGCeM9NB07HsedwODAzMyPSj5uamqKgoAChoaGUq7fpuJ+0tbXB398fDAYDenp6cHR0RH19Pe0p7N8Ga2trjB07Fjdu3CCl4C4uLiZ1hAoKCrBq1So4ODhQPmrUF97HklIZGRnY29sjLCyMJDIMCwuDh4eHwG1cXFxw8+ZN0md37tyBg4MDrfebPnUqxo0bh48++gjffPPNG22Hb0KQ+rw3VFZWor29nW8EQVtbW2hk9evXr7Fq1Sp4e3uDxWKhpKQEa9euRV1dHfE0zR2t6Ok++8KHrHe2s7MjRcnzKsO5bgagy23QF/sjN8K9+6hEdzV5XxGmqRb0FM9bN0Faa0Ga6oiICNy9exfr16+Hnp4eZfXujqhzSlQ7hJ1TvO2QlJQk/A76+vooLy8nnBNUMGrUKNLUHq/Cnfec6qnCXRSqqqp8Q/f6+vqUGjJbWloETnXJycmJDDTtKdxjVl1dDRUVFQwfPpyWTkVTUxM6Ozv5zmlFRcU3xkAMGTIE7u7u8PX1FTr9xktxcfE7iQHrDe9r9ceWLVuwZMkSODg4wMXFBSdPnsSrV6+IvBM7d+5EUVERzp8/D6BrIcJff/2FLVu2YM2aNYiJicGZM2dw+fJlWuvZ52/n559/JoQ9fUHQ3FJvaGtrQ2JiIqZMmUL6fMqUKW+sG3feubOzE/Pnz0dQUBDxwxsTE8O3T1ERt32BV+/MS2ZmJoyNjQVuY2RkxFdekN558+bNxMva2hpmZmbYvHkzZT/E8vLy0NHRIV76+vpQUVEhaZu5lte+KLSlpaVhYmLCp4NOSUmhVM3N1dBnZGSQPs/IyBB6LIyNjfnKp6en82no7927hzt37sDb21vkUkgq4J5TvWmHkZGRwPLd2yEIbmeSCuTl5aGrq0u8DA0NoaqqSlqF0tbWhhcvXvDFsvQWKysrvumCkpISSi2fnZ2dqKqq4utE6unpoby8nLL/B+h6mqbLOdTZ2YmSkhK+VWQmJiYiY+ysra0xc+ZMBAQE9Hi5K4vFQkNDQ5/qO1CYN28eDh8+jD179mDkyJG4f/8+QkJCiOXoJSUlpJwVJiYmCAkJQWRkJEaOHIm9e/fijz/+oHU5KUBBRk0bGxssWrQIf/75J+nzly9forW1FdXV1aivr8fTp08BCBc69XRuSRSHDh3Cf//9h4SEBMTExGDt2rUYNGgQjh8/DgDYv38/9PX1ifwMFhYWcHR0RFxcHNTU1LBlyxYMGzaMlL/hyJEjuH//PrZv346AgAB4eHhg8uTJtGWXHAh6Z6DrpjZt2jQEBgaCxWJBR0cHgYGBkJGRIQW5Hj9+HGpqapg3bx6A/+vgcf9dXV2N/Px8yMrKEvWdPn06jh07BlNTU5ibmyMiIgJVVVUkuykVdNfQczXV3PoHBQWhtraWGDJ3dXXFw4cP4e/vT9LQczXWQNeUx61bt7BkyRKoq6sTIxtUnP/CcHNzw+XLl2FoaAgjIyPExsaSzqmQkBDU1tZiwYIFALqGTaOjoxEYGAgnJyfk5+fj8ePHRDu57TA0NISGhgY6OjqQmpqKhIQEWm9YEhISmDlzJnx8fIiOho+PD2RlZUlZBf/44w+oq6tj8eLFAEBSbLe3t6Oqqgq5ubmQk5MjLMuzZs3CN998Ax8fH7i6uiIrKwthYWGUZx9MSUnBuHHjUFlZifLyclhaWkJJSYnIkGpvbw9FRUXcv3+f2Ib7pM5gMCAnJwd1dXV0dnYSo3XDhw9HZWUl6uvrISkpCQMDA5ibm9Py4MPl8ePH+Pjjj1FSUoKioiLY2tqCyWQiKSkJQNe1o6ysTAy/W1tbY9asWQgLC0NRURExytHe3k5Me48ZMwZFRUVgs9mQkZHBqFGjwGKxEBoaSls73ob3mVHzs88+w2effSbwb7yj0Vzc3NyIY/KuoCRN9969e3Ht2jXSZzNmzEB+fj7xnqsKpzMW4dq1a9DQ0MD3338PXV1dpKSkYMaMGUTvTVdXl/RkKCUlha1bt8LS0hJtbW2IiIiAq6srqd4xMTGYP38+9u3bh7179yI7Oxvz5s2jLTXvQNA7c5k5cyZaW1tx7tw5NDU1wczMDF9//TXk5eWJMpWVlaSLlM1mY9euXcT7kJAQhISEwMrKCt9++y2Aro5UfX09/Pz8UFNTAwMDA3z11Ve9Vi2/CVtbW0JTzdXQr127VqSmes2aNSQN/ezZs0mrFaKjo9HR0cF3A/joo48EJvmigpEjR6KxsRFhYWHEObVq1SqR7Vi9ejUCAwMRHR0NJpMJDw8PUhrn1tZW+Pr6oqamBgwGA9ra2li4cCHtFlhPT0+0trbi5MmTRPKr77///o3nFG+MD1dHP3ToUOzZswdA17LT7du34+LFi7h+/Tq0tbWxYsUKjBs3jtL65+bmQlZWFiNHjoSCggLYbDbu3LlDTBsoKCjwTSt4enoS/9bU1ISZmRnq6+tx/fp1AF2jUS4uLlBUVERHRwdqamoQFRVF6/Le1NRUyMvLY8yYMUTyq6tXrxKdZCUlJVLOCltbW0hJSWHatGmk8/zZs2eE9VNOTg4zZsyAoqIiWlpaUFZWhgsXLqCkpIS2doihnn6tPh8oNriB4v6gc+7/XTFQ3B8DISHQu0rCRjcDxf3RH4M6ews3mJdOePPO9JUJEyZQtq/+Qr8WiokRI0aMGDH9iYHysEsX4k6FGDFixIgR00PEnQrR9OtOBdVz5O+L3mSZ688IS/r0IUFXRPy7hjeG4EOF6hUP7wtusOeHTvcMmWIEI+5UiEasPhcjRowYMWLEUAIt6vPIyEj8/vvvePz4Merq6mBhYYGvvvqKtCSNLlasWIENGzaAxWIhPT0d3377rcgENl5eXvj8889hamqK+vp63Lt3D7t37yZFw8+cORM7duyAsbEx8vLysH//foSEhNDaDg6HAx8fH9y7dw+NjY0wNzfHihUr3qgNv379OqENX7JkCaZPn04qExAQgPj4eBQXF0NGRgYWFhZYsGABLUGYXAHUw4cP0dTUBGNj4x79X0lJSQgMDERlZSU0NTXh4eFBrB4CugRZ9+/fR1VVFYCuJ0V3d3c+HwgVPHjwAOHh4cSqCS8vL5Eq7MzMTPj5+aG0tBQqKiqYNGkSaflxSUkJQkJCUFBQgOrqasyePfudBGsNhGPBbUdwcDCpHfPnz+9RO27evElqB+9Kldu3b+Pp06coLS0Fg8GAmZkZPD09aVl2/fDhQ9y7d484p2bPni3ynMrKyoK/vz9xTk2cOBGjR48m/l5SUoJbt26hoKAAbDYbnp6elGcBFYSjoyPGjh0LJSUllJeXIyQkhLRyjhcjIyNMnToVWlpaYDAYqKmpQXx8PN+yV2tra0yePBnq6uqorq5GWFgYKZV3f0A8UiEaWtTnjx49wvDhw+Hj44Nnz55h5cqVWLp0KV/KUKrx9PTEvn37cPjwYUycOBGxsbG4cuWKUAWwk5MT/v77b1y6dAljx47FqlWrMHLkSPz+++9EGQcHB5w6dQrXr1/H+PHjcf36dZw+fVqojY8qbt68iVu3bmH58uXYt28fVFRUsH///jdqw7W1tTF//nyhGQZTU1MxZcoU7NmzBzt37kRnZyd+/vlnPrEaFdy5cwfh4eGYP38+duzYARUVFRw5ckTk/5WTk4PTp0/D2dkZ3377LZydnXHq1CnS8jg1NTV4enpi586d2LlzJywtLXHs2DHKXQdJSUnw9fXF1KlTsX37dpiZmeHYsWNCFdRVVVU4ceIEzMzMsH37dkyZMgU+Pj5EjhagaymmhoYGZs2aJVQTTQcf+rHo3o558+bh66+/BpPJxB9//PHGdpw5cwZOTk7YtWsXnJyc+NqRmZkJNzc3bN++HV988QU6Ojrw559/UqIO4CUpKQl+fn6YMmUKtm3bBlNTU5w4cUKkhv7kyZMwNTXFtm3bMHnyZPj6+iI5OZko09bW9s7PqWHDhmHGjBmIjIzE0aNHkZ+fj6VLlwpNptfa2oq4uDicPn0aR44cQWRkJCZPngwHBweijKGhIebNm4enT5/ir7/+wtOnTzF//vx+N31MpVBsIEKL+vybb77B3r174erqCjMzM2zatAnTpk2Dn59fnyr7JtatW4eLFy/iwoULyMzMxLfffouioiKsWLFCYHl7e3u8evUKp06dwqtXrxAXF4fz58+TnmC8vb0RFRWFI0eOICsrC0eOHMGDBw/g7e1NWzt4teGOjo4wNDTE+vXre6QNX7RoEVxdXQnLand27NgBNzc3GBgYwMjICN7e3qisrKR8TTuHw0F4eDimT58OW1tbIulYa2uryCV44eHhGDJkCKZNmwYdHR1MmzYNVlZWJK358OHDCe02i8WCp6cnZGVlKW9DREQEnJ2d4erqSoxSqKmp4eHDhwLLP3z4EGpqavDy8oKOjg5cXV3h7OyMe/fuEWWMjIzg6ekJe3t7oceIagbCseC24969e5g2bRpfO+Lj44Vud+/ePVhZWfG1g/e4bNy4ES4uLtDT04OBgQGWLl2K6upqUoZCKoiMjISTkxNcXFygo6ODOXPmQFVVVeg5FR0dDVVVVcyZMwc6OjpwcXGBk5MTqe6DBg2Ch4cH7Ozs3lnM0OjRo5GYmIjExERUVFQQCdSEWZBLSkrw7NkzlJeXo6amBsnJyXyZgl1dXZGdnY379++jsrIS9+/fR3Z2Ni1GaDH08c7U57W1tbTmcGcwGBgxYgQiIyNJn0dGRmLUqFECt4mPj4eenh4mT54MANDS0iKyvnFxcHDgW5d87949ofukAu6Fx5tsiMFgYMiQIXzpk/sKV+gjzC3ytlRWVqKurg5DhgwhPmMwGLCwsBAZEJaTk0PaBugaEhW2TWdnJ+Lj49Ha2kpp3oP29nYUFBTAysqK9LmVlZXQH8y8vDyB5V+9evVe80p86MeCC7cd1tbWxGfcdohK+5yTk0PaBhDdDgDEiCCVSvr29nYUFhYKPEeEeTCEnVPCNPTvAikpKejp6SErK4v0eVZWVo/TznMTEfJeS4aGhn3a57tCPFIhmneiPr9x4wbi4+NJxkGqUVdXh7S0NF9yo4qKCmhrawvcJj4+HuvXr8epU6cgKysLBoOBW7dukXz22travdonFXC9J92HEplMZp+04d3hcDi4cOECLC0tYWhoSNl+gf9bKdJ9OJbJZAqdPuBuJ2ib7itPioqK8Ouvv6KtrQ2ysrLw9vamNC7kbZThdXV1vVafvws+9GPBWx8AfN8xk8kkYjqEbdcbhT2Hw8GNGzdgZmYmdOr0bRB1TgmriygN/fs6pxQUFCAlJcXn5GhsbHzjw8lXX31FSO7u3buHxMRE4m9KSkp8+xQlU3xfDNTOAFXQrj6PjIzE8uXLcerUKQwdOlRoOUHq87dRfvdGKzx48GDs378fBw8eREREBFgsFnbv3o2DBw9i8+bNb7XPt+Hhw4ekjtn27duFlqXyhD537hxevXqF3bt393lfcXFxuHTpEvF+w4YNAISrwEXRk21YLBZ27dqF5uZmJCUl4d9//8WWLVso/zF7m/r3ZD90MlCOxePHj0nt4DoPBNXpTd9vb77/K1euoKioiJTam056e5/jHoMP8cft9OnTkJGRgaGhIaZOnYrq6mqSIK47VN9rxdAPrerzqKgozJo1C4cOHcLSpUtF7kuQ+lxeXp4vD74wqqur0d7ezjeCoKmpKTQ18xdffIHHjx/j77//BtAlQWtqakJQUBAOHDiAsrIylJeX92qfb4O9vT1JF02XNpyXc+fOITExEd9//z0l6vMRI0aQhrx528Bb5/r6epHBZEwmk89QK2gbaWlp4rgYGRkhPz8fERERlK0wEqY+F6UMZzKZfKMYXMlTT89jKhgox2L48OGkOXduO7pfB6J09Nx2CFLYC2r71atX8fz5c2zZsoV07VEBnRr6d0lTUxM6Ojr4RhAUFRXfaBTlBqSWlZVBSUkJEyZMIDoVgkYleqJTF9O/oE19HhkZCXd3d/z8889Yu3btG/cjSH3em/nMtrY2JCcnw83NjfS5m5ub0CAuBQUFdHZ2kj7rPk+ZkJDAtzxrwoQJIgPDeosgbbiqqiqeP39OlGlvb0dqaioGDx7cp/+Lw+Hg7NmziI+Px65duyibxpGTk4O2tjbx0tXVBZPJJC0Ha29vR2ZmJkxNTYXux9TUlG8JWWpqqshtgK52tbW19a0RPEhLS8PQ0BDp6emkz9PS0oTGCxgbGxO2Sd7ygwYNeqdJtwbKsehNO0QtyRTUjpcvX5LaweFwcOXKFTx58gSbN2+mJfGetLQ0DAwM+M6p9PR0oRp6Y2NjgedgTzT0dNHR0YHi4mLSgxDQJWXrbWArb7ByQUEB33F8m33SjTimQjR97lQIUp9zOxSbNm2Cl5cXSktLUVpaKnL+VlZWFkwmk/Tq7Zd+/PhxLF68GAsXLoSFhQX27t0LAwMDwgj57bff4q+//iLKh4aGwt3dHcuXL4eRkREcHR2xf/9+JCYmoqysDABw8uRJjB8/Hhs3boS5uTk2btyIcePG0RofwtWGc3NKFBQU4Pjx43za8KNHj+LKlSvE+/b2duTl5SEvL4/Qhufl5ZFEQWfPnkV0dDQ+//xzyMvLo6amBjU1NWhtbaW8DZMmTcLt27fx5MkTFBUV4d9//4WMjAwpQvzs2bOkVUETJ05EamoqQkNDUVpaitDQUKSmppK05v7+/sjMzERlZSWKiorg7++PjIwMoZHnb8uECRMQExODmJgYlJaWwtfXF2w2m8g7ERgYiP/++48oP2bMGLDZbPj6+qK0tBQxMTGIjY3FxIkTiTLcYL3CwkK0t7ejtrYWhYWFtIrOBsKx4LZj4sSJRE4J3nbwBk6fO3eOJPGbMGECXzvS0tJIx+XKlSt4/PgxVq5cCVlZWeLBhurrYvz48YiNjUVsbCxKS0vh5+cHNptN5J24efMmLly4QJQfPXo02Gw2kfskNjYWcXFxQs+pjo6Od3JORUdHw97eHnZ2dtDS0sL06dOhoqJCPGxNmTIFXl5eRHknJydYWlpCQ0MDGhoasLOzw5gxY0hLYx89egRzc3OMHTsWmpqaGDt2LMzMzGhVuIuhHlrU51zV9YEDB0jLTt3c3PhWZ1CJv78/1NTUsHXrVrBYLKSlpWHBggXEChUWi0Va83zlyhUoKSlh1apV+PHHH1FXV4cHDx4QOmSgK5hz7dq12LlzJ3bs2IG8vDysWbOGdkf9rFmz0NrairNnz6KxsRFmZmbYuXMnKT1zVVUVJCX/r1/IZrNJlr7g4GAEBwdjyJAh+O677wAAd+/eBdB1zHjx9vbmG+XpK1OnTkVraysuX76MpqYmmJiYYNOmTZCTkyPKVFdXkzqPZmZmWLVqFaGn1tLSwpo1a0ijA3V1dTh79izq6uogLy8PfX19bNy4kS/Cv6/Y2dkR6vPa2lro6upi3bp1IpXh3t7e8PPzw4MHD6CiogIvLy/SEuXa2lr8+uuvxPt79+7h3r17MDc3x6ZNmyitPy8f+rHgbUdbWxupHRs3buxxO27evAktLS2sXr2a1I779+8DAClHDQAsXboULi4ulNXfzs4OTU1NCA0NRV1dHXR1deHt7S3ynFq7di38/f3x8OFDqKioYM6cORgxYgRRpra2FgcPHiTeR0REICIiAmZmZti4cSNldeclJSUFCgoKmDBhApSVlVFWVob//vsPNTU1ALqmbXhz5UhISGDq1KlQU1NDZ2cnqqurcefOHdKIb0FBAa5du4bJkydj0qRJqK6uxtWrV3u8wvBdMVBHGKiiX6vPtbS03ncVKOH27dvvuwqUMBDcH1Q/eb4vZGRk3ncV+kw/vvX0CqoTZL0voqOj33cV+sy+ffto/z/i4uIo25eTkxNl++ov9GuhmBgxYsSIEdOfEI9UiEYsFBMjRowYMWLEUEK/HqmQlZV931WghMzMzPddBUp4l64KunhfCaioZiA8LdEZSPgueZ/ZUqmEN7BSjHAGwrVHJ/26UyFGjBgxYsT0J8SdCtHQoj5PT0/HunXr8PLlS9TW1kJPTw8LFy7E7t27wWAwKG1Ad5YuXYp169ZBW1sbGRkZ+OGHH4RKkw4dOoS5c+fyfZ6enk5aNsdkMrF9+3Zi2VRBQQH27t1LkvpQibm5OaysrCAvL4/a2lo8efJE5FOdlpYWbG1toaKigubmZqSmppJcCBISErC2toaJiQnk5eVRV1eH5ORk0lJTOnj48CEiIiIIxbOnp+cbFc8BAQEoLS0Fk8kUqHi+ffs2SfFM9YoVQXA4HAQEBCAqKgpNTU0wNTXF4sWL35jCOSEhAX5+fqioqICWlhbmzJkDe3t7Uhk2m43r16/j+fPnaGtrA4vFwooVK4TmLaCiDY2NjTA1NcWSJUt63AZuErjubdi2bZvAFNkTJ07EkiVLKG0D0LXsMCoqCvX19WCxWPj4449Fekays7MRFBSEsrIyMJlMuLm5CV3N8fTpU1y6dAlDhw7FsmXLKK87l5iYGDx48AD19fXQ1tbGzJkzRbYhJycHwcHBKC8vh7KyMtzc3PgC/Jqbm3Hnzh28ePECzc3NUFNTw4wZM/i8IVTCTWd+7949NDQ0wNzcHCtXrhSZ8r+goADXr19HTk4OKisrsXTpUsyYMYNU5s6dO7h79y5xzzMwMMCcOXNga2tLW1vEUMdbjVRw1efe3t4Cs84xGAwsXboUdnZ2UFVVRXJyMtasWYPOzk7s37+/z5UWxqxZs/DDDz9g165diI+Px+LFi/Hff/9hwoQJAlXMu3fvJi15lZaWxp07dxAcHExqy6VLl1BVVQVvb2+UlJRAT0/vjZnj3hZDQ0PY2toiMTERlZWVMDMzw7hx43Dr1i1C/sWLoqIi3NzckJ2djdjYWGhqasLe3h4tLS3EUqzhw4fDyMgI/6+98w6L4tr//5sVpO/Sq3SQolKlKir2hiXGGjV2TWJM1BRNctWbqKk3mmjUWGNybVERkCKCoAIC0mx0BKT33svu7w9+O5dhC20GCN95Pc8+j6xnlnOYPTNnzvmczys2NpbYxjZ58mSEhIQQW8CoJjExEd7e3nj77bdhZGSEJ0+e4OzZs9i3b5/Q70xFRQXOnTsHFxcXrF27FtnZ2bh16xYUFBSI7XN8xbONjQ0pDwHdBAYG4v79+9i8eTM0NTXh5+eHn376CUePHiVt8e1KZmYmzpw5g6VLl8Le3h4JCQk4c+YM9u3bRwysGhoacPToUVhYWGD37t1gs9koLS2lVGLFJyAgAEFBQdi8eTO0tLRw9+7dXrXh9OnTWLp0KRwcHBAfH4/Tp09j//79RBsOHDhA2sWRn5+Pn376iRbh3rNnz3D37l0sWbIEhoaGiImJwYULF7B3716h36nKykpcvHgRzs7OWLVqFXJycuDt7Q0FBQVMmDCBVLaqqgr+/v60iNC68uLFC/j7+2Px4sUwMDBATEwM/vjjD+zevZu0BbNrG/744w84Ojpi5cqVePPmDXx8fCAvL4/x48cD6MxTceHCBSgoKGDNmjXgcDioqamhffnY19cXAQEBeO+996CtrQ0vLy8cPXoUP//8s8jvVGtrKzQ0NODi4oI///xTaBlVVVWsXr0ampqaADq3+/7000/47rvvKHcU9QdmpkI8tKjPjY2NsXHjRtjY2MDAwACLFi3CO++8g/Dw8AFVtie2bduG69ev49q1a8jMzMShQ4dQWFgoMkV4XV0dysrKiJe1tTU4HA5u3LhBlFm5ciWUlJSwefNmxMXFoaCgALGxsQIZ+qjCwsICWVlZyMrKQm1tLRITE9HY2CiQvY6PqakpGhoakJiYiNraWmRlZSE7O5v0hGJoaIjk5GQUFRWhoaEBmZmZKC4upvUphq94dnFxgaamJpYuXQolJSWR29aePHkCJSUlLF26FJqamnBxcYGTkxPJEKuvr49FixbB3t5+ULXhwcHBWLhwIRwcHDBmzBhs3rwZra2tYreWBQcHw8rKCgsWLIC2tjYWLFgAS0tLkgE3ICAAKioq2Lx5M4yNjaGmpgYrKyvKZXVd2zBx4kSMGTMGW7ZsQUtLC6Kjo0Ued//+fYwbNw4LFy6EtrY2Fi5cKNAGNpsNDodDvJ4/fw4NDQ2Ym5tT2gYACA8Ph6OjI5ydnYlZCiUlJZFtiI6OhrKyMhYtWgRNTU04Oztj4sSJePToEakcl8vFtWvXMGvWLFpNyvw2TJw4EY6OjtDQ0ICnpyc4HI7INsTExEBJSQmenp7Q0NCAo6MjHBwciLwaABAfH4+mpiasW7cOhoaGUFZWhqGhIbS1tWlrB4/HQ2BgIJYsWQInJyfo6enh/fffR0tLi9itqSYmJli7di3c3NxE9mEHBwfY2dlBR0cHOjo6WLVqFWRkZEZMbNpIZ1DU55mZmbh37x6tU9VSUlKYMGECqbMBnaPciRMn9uozVq1ahfDwcBQUFBDvzZ49GwkJCThy5AgSExMREhKCnTt3kpJOUQWLxYKysrLAskRxcbHItMGqqqoC5YuKiqCiokKMqFksltB05HTlAeFn+Ot+YzE3NxereO5efqgVz0BnMGFNTQ1JhiclJQVzc3MBTXNXXr9+TTxJ8hk/fjxpWerZs2cwNDTEqVOn8NFHH+HQoUMCNzwq29C1Pr1tQ3cJ4Pjx40Ue097ejqioKLi7u1P+NNfe3o6CggKBNPVmZmYiv1Nv3ryBmZkZ6T1zc3Mi8ySfkJAQyMvL05IFtCvt7e0oLCwUqJOZmZnIVNS5ubkC5ceOHYuCggKiDcnJydDX14ePjw+OHDmC48ePIywsTKDPU0lpaSmqq6thbW1NvCclJQVLS0ukp6dT9nu4XC6ePHmClpaWASsKGAaHft8Zu6rPReHm5gYZGRmYmZnB3d2dlKmyOy0tLaitrSW9+pIcR5z6vDc3Tw0NDXh4eODatWuk9/X19TF//nyMGjUK69evx6+//ort27fTkv1w9OjRYLFYaG5uJr3f0tJCyhjYFRkZGYHkO83NzWCxWMT0Z3FxMczNzQlZj6amJnR1dUV+5kChQ/E8VIjThneXbXWlpqamx2PKysoIO+6ePXswbdo0XL16lfIkRPzf2b0+/Glyccf1pd0JCQlobGwkxcFQBf871V04JU5FL+w7paCgAC6XS0iqcnJyEBsbi7fffpvyOnensbFRaBsUFBTEtkFY+a5tqKqqwqtXr8Dj8bBhwwZ4eHggPDycNMtHNfxl0+67qTgcDiVLqrm5uXj33Xexdu1anD9/Hnv37iVlQx5KGPeHeGhVn9+4cQN1dXV4/vw5Pv30U/z0008itd7CLKWKiop93sbYX0358uXLUVtbi6CgINL7LBYLFRUV+Oyzz8DlcvHy5Utoampix44dOH78eJ/qRhfC2tyVhIQEODo6EgFR9fX1yM7Opn39WFinEdeRRGm2B7PzRUVFkdZ6P/74Y5F16Gu9up8nHo8HQ0NDYiufgYEBCgoK8PDhwwHdmKOionD58mXiZ1FtoFoZ/vjxY0yYMIFyu6e4+vRVG971c5qbm3Ht2jUsW7ZsyIyfXevT2//r3i+4XC7k5eWxdOlSsFgs6OrqEsqBrgHnAyEiIgLnzp0jfv78889F1puK/qqjo4Pvv/8eDQ0NePr0KU6dOoWDBw8Oi4HFSB0MUAWt6nN+UI2VlRU6Ojqwbds27N27V6hdb//+/dizZw/pPUtLy17XRZz6vLy8vMfjV61ahdu3bwvYFUtLS9HW1kaaSszMzISmpiakpKQoNWO2traCy+UKzCBIS0sLzF7waW5uFlqey+USMxgtLS2IiIggZi+amppgY2NDm1JYlDZcnKJa2CzGUCiebW1tSfbKrtrwroF0tbW1Yge8HA5HaPu7PtkpKSlBR0eHVEZHRwfx8fEDaQKlbeg+K9FdO86nvLwcycnJ2Llz54DqLgpx2vDuT/J8xGnD5eTkUFJSgqqqKkI4CPzvhr1v3z58+umnUFVVpawNcnJyYLFYAjNvfW1DQ0MD0Qagc/aIxWKRlmQ1NDRQV1eH9vZ2SuKPHBwcSHFd/OtedXU1aRBZU1NDSS4YSUlJaGlpAeiMw3j9+jUCAwOxdevWAX82A73Qpj7vDl+HLGrWYKCW0ra2Nrx8+RLu7u6k993d3REXFyf2WFdXVxgZGZGMn3xiY2NhaGhIqouxsTGKi4spHVAAnU8cVVVVRGfio6WlJXJgVFFRIbR8ZWWlwN+ay+WiqakJEhISGDNmDCl2hEr4iufua6vp6eliFc/dy6elpQ264llWVhaamprES0dHBxwOB8nJyUSZ9vZ2pKWliQyeBTovhElJSaT3Xr16RdpSa2pqKjR+ZqA3MlFt6Fqf/rYhKSlJ6DERERFgs9kk0RWVSEpKQldXVyBYLyMjQ+R3ysDAQKB8eno6xowZg1GjRkFdXR179uzBxx9/TLysrKxgYmKCjz/+mPJEaZKSktDR0RGoU2ZmJvT19YUeo6+vLxDDkpGRAV1dXaJfGBgYoKKigvTgU15eDkVFRcoCmmVlZaGlpUW8xowZAyUlJbx8+ZIo097ejpSUFFpiH/j3j+EAs/whHlrU51euXMHff/+NlJQUZGVl4ebNm9i/fz9WrlxJa9T+2bNnsXr1aqxcuRKmpqY4ePAgdHV1CT31vn37hC5ZrFq1CgkJCUhLSxP4vz///BPKysr4+uuvYWRkhOnTp2Pnzp2k6WUqSU1NhbGxMYyMjMBms2FnZwc5OTniwmJtbU3ao56ZmQl5eXnY2tqCzWbDyMgIxsbGSE1NJcqoqKhgzJgxkJeXh7q6OqZNmwYJCQnadrAA/1M8x8TEoKSkhFA889Xtfn5+uHLlClHezc0NVVVV8Pb2RklJCWJiYhATEwMPDw+iDD9Yjx+kVlNTg4KCAtq14bNmzYKfnx/i4+ORn5+PCxcuYPTo0aTzcO7cOdy6dYv4edasWUhKSkJAQACKiooQEBCAlJQUzJo1iygze/ZsZGVlEXkUoqOj8ejRI5LWmq42nD9/HtLS0nBxcSG14ebNmwJt8Pf3R1FREfz9/ZGcnExqA9A5WI2IiMCkSZNoHQC6u7vj6dOniI2NRUlJCXx9fVFdXU20ITAwkPRg4OLigqqqKty9exclJSWIjY1FbGwsETAuJSVFulFqaWlBRkYG0tLS0NLSouVaxX/IiYuLQ2lpKfz8/FBdXU18l+7du0cyPjs7O6Oqqgp+fn4oLS0ljp0yZQqpTGNjI/z8/FBWVobU1FQ8fPiQUrtqdyQkJDBv3jx4e3vj6dOnyMvLw6lTpyAtLU1auvvtt99IcWrt7e3IyclBTk4OOjo6UFlZiZycHNLg+tq1a0hJSUFpaSlyc3Nx/fp1JCcnY/LkybS1py8wgwrx0KI+l5SUxPfff4/09HTweDwYGBjggw8+wO7du6n4dSK5e/culJWV8fHHH0NDQwNpaWlYv3498USuoaEhkOxHUVER8+fPFxlwWlRUhDVr1uDQoUMIDg5GcXExLly4gFOnTtHShry8PEhLS2P8+PGQkZFBTU0NHj9+TOSokJWVJS0HNDQ04NGjR7Czs4OZmRmampqQkJBA2pUzatQoTJgwAQoKCkQEelRUFK0jfzs7O0Ibzs+NsW3bNrGK561bt5IUz0uXLiU9+dbW1opUPNM17Q4A8+bNQ2trK/773/8SiaP27t1L2otfWVlJmn42NTXFjh074OXlhTt37kBDQwM7duwgzVQYGRnhgw8+wO3btwm1+OrVq2m5GcyfPx9tbW3466+/0NDQABMTE4E2VFRUkC50ZmZmPbYB6Nx9UFFRITBLSDW2trZobGxESEgIkVBt06ZNxPR7bW0tKUhQRUUFmzZtImZS2Ww2Fi1aJJCjYjCxtrZGQ0MDHjx4QCTw2rBhA9GGuro6gTZs2LAB/v7+iI6OBpvNhqenJ2knj5KSEjZt2gR/f3/8+uuvYLPZcHNzoz0x3KJFi9Da2oqLFy+ioaEBpqam+OKLL0jfqfLyctJ3qrKykpQ00c/PD35+frC0tCSuwTU1Nfjtt99QXV0NOTk56OvrY//+/aSdJkPJSB0MUMWwVp8Ph6AcKuh6I/wnw7g/hg8j4cLGuD+GF3QHbg8Gg5F188WLF5R91nAZKFEJ4/5gYGBgYGDoJSNhQE8nzKCCgYGBgYGhlzCDCvEM60EF1QFrQwWV29KGksFKjU0ndGRCHQroDLIdLOjafTTYDJcAwoFCVzI8hv9b/PPvEgwMDAwMDIMEM1MhHlrU513JzMyEnZ0dRo0aRZsRsyszZszA/PnzweFwUFBQgCtXrvQqF72ZmRm++OIL5Ofn41//+hfx/v79+4Um4Xr27Bl+/vlnSuveFR6Ph4CAAERGRqKpqQkGBgZYuXJlj5KgxMRE+Pv7o7y8HGpqavD09CTtoMjMzERISAhyc3NRW1uLrVu30pZbgMfjwc/PDxEREWhsbIShoSFWr14tkPCpOwkJCfD19SXasHjxYlIA1qNHj/D48WNCuc0XdnV3bVDZDm9vb5I2fP369T1qw2NjY0na8GXLlpG04R0dHfD29kZUVBSRmGry5Mnw9PSkfEbFwsICEyZMgKysLKqrq4mtvsKQlZWFk5MT1NTUwGazkZycLCBPMzAwgI2NDRQVFYlEZ69evSK5TejAwcEBrq6uUFRURFlZGYKCgpCXlye0rIWFBRwcHKCpqUmk8H/06BGysrKIMnwJV3cyMjKE5q2hCrr6xr1795CYmIji4mKMHj0axsbGWLp0qUAuG6racP36ddy/fx8NDQ0wMzPD9u3bRebcADrTb1+9ehWvX79GWVkZNm3ahEWLFpHKdHR04Pr163j06BGRXGv69OlYvnz5iJlpHMn06wzx1eddtwQKo62tDatXr6Z9qxkfZ2dnvPPOO/D19cWBAweQnp6OTz75pMflB1lZWWzbto2U4IjPr7/+ig8//JB47d+/Hx0dHXj69CldzQDQKTkKCwvDihUr8Omnn4LNZuPEiRMiM2sCQFZWFi5dugRHR0fs27cPjo6OuHDhAkm41NLSAl1dXaxYsYLW+gOdlssHDx5g1apV2LdvHzgcDn755Zce23D+/Hm4uLjgq6++gouLC86dO4fs7GyijLKyMpYsWYL9+/dj//79MDc3x+nTp4Xq7amArw1fu3YtDh48CA6Hgx9//BFNTU0ij+Frw93c3PD111/Dzc0Np06dIt10/f39ERYWhrVr1+Lo0aNYsWIFAgMDERISQmn9jYyM4OzsjOfPn8PHxwclJSWYPXu2yEylo0aNQnNzM54/f47KykqhZVpaWvD8+XP4+fnB29sbGRkZcHd373GgNRCsrKwwZ84cImV0bm4u1qxZI3JXkr6+PrKysnDt2jWcP38eOTk5WLVqFekGe/PmTfz888/E68yZM+ByuUKvBVRCV99IT0/H1KlT8fnnn+Ojjz4Cl8vFr7/+KuAHooI7d+7A19cX27Ztw48//ghlZWUcPHhQbL9oaWmBlpYW1q9fLzKdu5eXF+7du4dt27bhxIkTePfdd3Hnzh34+/tT3gYG6qFFfc7nq6++goWFxaDcwABg7ty5ePToER49eoTCwkJcuXIFlZWVPcZmbNy4EdHR0ULtiw0NDaipqSFe48ePR2trK62DCh6Ph7CwMMyZMwe2trbQ0dHBunXr0NbWJjY76MOHD2FhYYE5c+ZAS0sLc+bMgbm5OUksNG7cOHh6esLW1pa2+vPb8ODBA8ybNw92dnbQ1dXFu+++2+Pf7sGDB7C0tMTcuXOhpaWFuXPnwsLCAg8ePCDKWFtbY8KECUTGyCVLlkBaWpp0caWyHffv34enpyehDd+6dWuftOE6OjqENvz+/ftEmdevX8POzg62trZQV1eHo6Mjxo0bR3k7xo8fj/T0dKSnp6OmpgYxMTFoaGiAhYWF0PL19fWIiYlBZmYmWltbhZYpLi7GmzdvUFNTg7q6OiQnJ6OyshKampqU1r0rLi4uSExMxLNnz1BeXo779++jtrZWpIX4/v37iIqKQlFRESorKxEWFobKykqS9bO5uRkNDQ3Ey8jICG1tbbTGrNDZN3bt2gU3Nzfo6OhgzJgxWL9+PSorK0VaUAfShrt372L58uVwdXWFgYEBPvroI7S0tAiYortiZmaGDRs2wN3dXWSMVlpaGpycnDBx4kRoamrCzc0Ntra2Yo26gwmT/Eo8tKnPQ0NDcfPmTfz2228DqmBf6mRoaIhXr16R3n/58qWAOrgr7u7u0NDQwJ07d3r1e6ZMmYLo6GiRF1sqqKioQG1tLemiLyUlBVNTU9LUbXeys7MFbhSWlpZij6GL8vJy1NbWkpaOpKSkYGZmJrY+WVlZAstNVlZWIo/hcrmIjY1Fa2srLfvsRWnDLSwsxF7kMjMzBZZjJkyYQDrGzMwMycnJRDbB3NxcZGRkULocxWKxoKqqKjCLU1BQIODJGQja2trgcDgCacepgsViQVtbW+B78Pr16z7lsxk9erTYJ2k7OzskJSXRmhhusPoGAKKtfE8IVfC9KV0fTqSkpDB+/HhSNt/+YGlpiRcvXhCBvNnZ2UhJSSEtHQ4lzKBCPP0O1OyqPr9w4QLp/yoqKrBhwwb897//7XXCpJaWFoEpuo6Ojl6n/VVUVMSoUaN6LUACOhXgK1aswJEjR0h580VhbGwMPT09gfZSDV9EJUwFLmo6mn+csGNEaZXpRJwyvKc2CDumu5yroKAAP/zwA9ra2iAtLY3t27f3uB7dH0Rpw9lsNhHTIeq4nrThCxYsQFNTE/bv3w8WiwUul4tly5aRUmcPFGlpabBYLIEbaVNT04BvNFJSUli1ahVGjRoFLpeLqKgo2pag+DKu7hK8hoYGkTKu7ri6ukJKSkrk0oaOjg40NDRw9+7dAddXHHT3DT48Hg+3bt2Cqakp5ctS/Pi4roI6oDO53ECTmr311ltobGzEzp07iX7xzjvvkFKTM4inqqoKu3btgq+vL4DO7KcnTpwQOF982tra8NVXXyEgIABZWVngcDiYOXMmvvvuuz5fV2lRn2/duhVr1qzp05dAmPrc2tqakqc2YUlDJSQk8N5778HLy6vXT1dTpkxBXl4e5U/+sbGxpPz47733HlHH7lCpqqaSmJgYXL16lfj5gw8+EFqf3iRw7c0xmpqa+PLLL4m05JcvX8aePXsGPLB48uQJyevCTy1PRztiYmIQFRWF7du3Q1dXlwhi4wdsUkn33y0hIdGrNoijra0N3t7ekJKSgo6ODpycnFBXV0fbbAXQ/3aMGzcOU6ZMwd9//02kvO+Ora0tSktLKR8YDXbf4HP9+nXk5+fj008/7Ut1hfLo0SOcPn2a+Pmrr77qdR37SkREBB4+fIg9e/ZAT08P2dnZuHjxIlRUVIZFmoF/wgzDmjVrkJ+fj3v37gEAtm3bhnXr1okcMDc2NiIhIQH/+te/YGNjg6qqKnz88cdYtGhRj0LO7tCiPg8NDYWvry+RnprH44HL5UJSUhJnz57Fpk2bBD5LmPqcf3PtDXV1dejo6BCYlRA1kpeVlYWxsTEMDAywfv16AJ1fFhaLhUuXLuGHH34grauOHj0aLi4u8PLy6nWdesuECRNIEeh8VXX3WRZx6nBAeFt7OoYqbGxsSMsPXXXb3dsgbvaq+9O8qGMkJSWJ6XsDAwO8efMGYWFheOeddwbUDjs7O5LbQpQ2vLvGvDvCtOHdj/n7778xf/58YmZCT08PFRUV8PPzo2xQ0dLSAi6XKzArISMjI3YZoLfwZ8EqKyvB4XBgbW1Ny6CisbERXC5XYFZCTk5OYPaiO1ZWVvD09MStW7dExqtISkpi3LhxePToEWV15jPYfQPoHFC8ePECe/fuFRkQ2RecnJxI9tGu6nO+zwcQ7Cf94Y8//sCyZcuIAH9DQ0OUlZXh9u3bzKCiF6SkpODevXuIjo4mRHXnzp2Dq6sr0tLSYG5uLnAMh8NBcHAw6b0TJ07AyckJubm5Ynf0dGfAeSq+++472Nrakr5wUVFRpHz4Pj4++P777/HkyROR03DS0tKQlpYmvdcX42FHRwdycnIwfvx4xMfHE++PHz8eCQkJAuX5085dmTlzJiwtLXHixAmBKTwnJydISkr2qHjvDzIyMqTEMzweD2w2G6mpqdDT0wPQeSHKzMzE4sWLRX6OkZERUlNTSR2Pbz2lG1FtSElJIb6Q7e3tyMjIwNKlS0V+jrGxMVJSUjBz5kzivZSUlB7bQJUaWVZWliRE4vF4hDbcwMAAQGc7UlNTxQYgm5qaIikpCXPmzCHee/XqFUkb3tLSIrBFjsViDXgGoStcLhcVFRXQ0dHBmzdviPd1dHQoD96TkJCgzVLK5XJRVFQEY2Njkk3Y2NhY7JZxfmDynTt3xMbAWFlZQVJSkqTyporB7Bv8bZ7Pnj3Dnj17oKamRkkbhPULZWVlPHv2jPj9bW1tePXqFd59990B/a7W1laBGzfV/WIgUDmoELbsL+xe2BeioqLA4XBIFmUXFxdwOBw8efJE6KBCGDU1NZCQkOjzIJEW9bmlpSXGjx9PvHR1dcFisTB+/HhKRs2iuHfvHqZOnYopU6ZAR0cHa9asgaqqKkJDQwEAy5cvx7Zt2wB0dgq+Rpv/qq2tRVtbGwoKCgQCMadOnYqEhATU19fTVn8+EhIS8PDwwP379/H8+XMUFhbir7/+gpSUFCnS/c8//4SPjw/x87Rp05CamkrYVIODg5GamkrSh7e0tCA/P58IsK2oqEB+fr7Ytdz+tmHGjBnEvvmCggJcvnwZo0ePhpOTE1Hu0qVLpCDZ6dOnIyUlBUFBQSguLkZQUBBSUlIwY8YMogx/C2N5eTkKCgrg7e2N9PR00udS2Y7Zs2fj7t27YrXhZ8+eFdCGv3r1Cv7+/igsLCS04bNnzybK2Nra4u7du3j27BnKysoQHx+PoKAgygPSXr16hbFjx8LMzAwcDgdOTk5QUFAgAuocHBwElipVVFSgoqICKSkpyMjIQEVFhXRxsba2ho6ODhQVFcHhcDBu3DiYmprSmqciOjoadnZ2sLGxgZqaGmbNmgUOh0M8REyfPp006B43bhwWL16M4OBg5OfnQ15eHvLy8kIv2HZ2dkhLS6Nk9qYn6Owb165dw9OnT7F582bCclxTU0N5YLmEhAQx+xMdHY03b97g119/hbS0NOm7dPz4cfz111/Ez21tbcjKykJWVhba29tRWVmJrKwsFBUVEWUmTpyIW7duIS4uDiUlJYiOjoavry/pJjlS+Pbbb8HhcEivnnZV9kRxcbHQIGwNDY1ezyI2Nzdj3759Yrdsi4IW9flQERMTAwUFBSxevBhKSkrIz8/Hf/7zHyKgTklJqV8ps7W0tGBubo7vv/+e6iqLZObMmWhtbcWNGzeI5Dg7d+4kPfFUVlaSRs3GxsbYuHEjoRNWU1PDpk2bSEsr/M7Ph7+c4+zsjHXr1lHahtmzZ6O1tRXXrl1DY2MjjIyMsGvXLrFtMDExwebNm+Hr60vowLdu3UqaPq6trcWlS5dQW1sLWVlZ6Orq4sMPP4SVlRWl9eczf/58tLa24s8//yS04Z988kmP2vD33nsPt2/fhpeXFzQ0NPDee++RllbWrl0LLy8v/PXXX6itrYWSkhKmTZsmdjaqP2RnZ0NaWhq2traQk5NDVVUVkbAI6FxC6J6zYsmSJcS/1dTUYGJigrq6OmLgJCkpCVdXV8jLy6OjowPV1dV49OgRLdt6+SQnJ0NWVhZTpkyBgoICysrKcO3aNWJJQEFBgXQBtLe3x6hRozB//nzMnz+feP/58+dEABvQOYDS19fHf//7X9rq3h26+gZ/O2f3xHzr16+Hm5sbpW1YunQpWlpa8Pvvv6O+vh5jx47FoUOHSP2irKxMQH3edZnb29sb3t7eGDduHI4cOQKgc/3/ypUr+P3331FTUwNlZWXMmTNn0FIT9ASVMxXClv1FzVIcOnRIIO6wO7GxsQCE15HH4/Wq7m1tbVi1ahW4XC5OnTrVY/nuDGv1OT/W4Z8O1TfroWIkuD9Git+AcX8MH0aK+4OOrJuDjbDsx1STkZFB2WeJS3fQnfLycpSXl4stY2hoiKtXr2LPnj0CGayVlJRw7NgxbNy4UeTxbW1tWLFiBbKyshAaGtqvh/B//l2CgYGBgYFhhKOmptarGBlXV1fU1NTg6dOnxHJaTEwMampqxM5W8QcUGRkZCAsL67cIk0mkzsDAwMDA0EuGe/IrftbVrVu3Ijo6GtHR0di6dSsWLlxICtK0sLAgYnba29vx9ttvIy4uDleuXEFHRweKi4tRXFzc53icYT1TMdy37vSWwQjuHAx6cr38ExDnVvgnQXea9cFgpJwLuna8DDaMrKt3/BPuS1euXMGuXbuIwPBFixbh5MmTpDJpaWlEPFJ+fj4RZ9T92hIWFoZp06b1+nfTYinNyckRmjI5MDAQc+fO7euv7BPTp08nLKV8/0dvLaX79+9Hfn4+Dhw4QLy/b98+kZbSY8eOUVp3PlFRUXj8+DHq6uqgqamJhQsXik1BnZWVBX9/f5SUlIDNZmPKlCmknQlxcXG4deuWwHHffPMNpKSkaGkDMDLMmOPGjYOdnR3k5ORQWVmJyMhIUqR6V+Tk5ODm5gZ1dXUoKSnhxYsXiIyMFCg3evRoODs7w9jYGNLS0qirq0NkZCTlWzy7wuPx4OPjQzKtrlu3rsdMi3FxcSTT6ltvvSXUtBodHU3kKJg0aRItplWA+vOxePFioX+DN2/e0Cqw4rszHj9+TARqrlmzpsfzER8fDx8fH5SVlUFdXR1LliyBvb290LIBAQG4c+cOZsyYgVWrVtHShmvXruH+/ftEoOaOHTvE5jQICgpCWFgYsb3Z1NQU69atI6Uk4Nfdy8sLVVVV0NfXx5YtWzBu3DjK2zBSUVFR6THwuGs4paGhIWVbdvs1U8G3lG7fvl3sFtGQkBDSF6FrkhQ6cHJywjvvvIM///wT6enp8PDwwN69e7F//36xWya7Wkq7b585ceIEKUBRQUEB33zzDRFlSzV88+PixYthaGiImJgYXLp0CXv27BG6X7iyshKXLl2Ck5MTVq5ciZycHPj4+EBeXh4TJkwgyklLS+OTTz4hHUvngIJvxoyKikJJSQksLCwwe/ZseHl5CU1W1NWMKeriwTdjVldXg8vlQk9PD+7u7mhubqYl6M/U1BSTJ0/G48ePUVxcDCsrKyxcuBDXrl0TOvvEb0NCQgKsra2FfiaLxcKiRYvQ1NSEoKAg1NfXQ0FBgVbXBPA/0+rmzZuhpaWFu3fv4qeffsLRo0dJ0fpd4ZtWly5dCgcHB8THx+P06dPYv38/sYslICAADx8+xJYtW6Crq0tkP5SVlSVtn6UCOs7HvXv3SIMfGRkZrFy5knZ51b179xAcHIyNGzdCU1MT/v7+OHbsGA4fPiwymPj169c4e/YsoTtPTEzE2bNn8dlnnwnkccnOzsbjx4/75EXpK15eXvDx8cFHH30EXV1d/P333zhw4ABOnTolMgX8q1evMGXKFFhYWGD06NG4ffs2Dh48iJMnTxJr+OHh4Th//jx27NgBS0tL3Lt3D//+97/x22+/QV1dnbb2MFADrZZSVVVVaGlpEa/Ro0f3q5K9Ze7cuXj8+DEePXqEoqIiXL16FZWVlaR93MLYsGEDoqKiemUpHTduHK2W0oiICEycOBFOTk7Q0NCAp6cnOByOSCNmTEwMlJSU4OnpCQ0NDcLuFx4eTionISEBRUVF0otORoIZ08bGBikpKUhJSUFVVRUiIyNRX18vIArjU1dXh4iICKSlpYlsg6WlJaSlpREYGIji4mLU19ejuLhYrEdkoPB4PAQHB2PhwoWEaXXLli19Mq1qa2sTptWumff4plV+7gi+aTUnJ4fydtBxPlpaWtDU1ES89PT00N7eTuvsF99SOn/+fNjb20NXVxcbN25Ea2urwOxcV0JCQmBlZYX58+dDW1sb8+fPh4WFBUJCQkjlmpubcf78eaxfv55ykVjXNvj6+mLFihVwc3ODgYEBPv744x4tpXv37sX8+fNhbGyMMWPGYOfOneByuXj+/DlRxsfHBzNnzsTs2bOhp6eHrVu3Qk1NDQEBAbS0pa8M95iKoYY2SynQuY6joaGBSZMmCZ1+pxJRltLuWQy7w7eUent79+r3TJkyBTExMbRYStvb21FQUCCwzcjMzIyUDbErb968EVo+Pz+flNW0tbUV3333HY4ePYo//viD1u18I8GMyWKxoK6ujry8PNL7eXl5AxrEGBoaoqSkBO7u7tiwYQNWrlwJe3t7Wi8wokyr5ubmYp/IX79+LTBrNH78+F6ZVkXNDPQXus5HdywtLZGRkUGk0qaD8vJy4gGFj5SUFMaOHSt2MJOVlSWQi2XcuHECx1y9ehXW1ta05W0BRFtKx40b16ftzi0tLejo6CAectra2pCZmQk7OztSOTs7uwHbTxkGB1ospQoKCvj5558xadIksFgs+Pr6YuXKlbh8+TLWrl074EoLQ5SltHt+/a5oampi+fLlfbaUXrx4kZI6d4fvNxBmGhUVF1JfXy+0PJfLRUNDA9hsNjQ0NLB8+XJoamqipaUFkZGROHPmDD766CPK0vh2ZSSYMWVkZIS2obGxkUid3h/YbDYUFRWRkZEBf39/cDgcTJkyBSwWq8/int4iyrTK4XDE7nvvjWl1/vz5aGxsxBdffEEYJd966y1KTasAfeejKxoaGlBVVUVYWBglnycKqs23XX0/T58+RW5uLr788ksKaywIP2i7+5KskpJSnyylf/75J1RUVAhxZG1tLbhcrlD7afe8C0PFSJ1hoApaLKVqamqE3RHoTLtaVVWFH374QeSgYqDqcz69tRhKSEhgx44duHPnjsjgwe7QZSntid5mQutaHvjfl19fX58UPGVgYIATJ07gyZMnWLRoEbWVFVIPPv9EM6awNgwECQkJNDU14eHDh+DxeCgrK4O8vDxsbW0pG1RERUWRTKsff/wx8bu70pvvVU////TpU8K0qqOjg7y8PNpMqwD156MrlpaWqKioQGlpKWWfCXSmF+8aNPfhhx+KLNvX9nT9e1RWVuL69evYvXs35fFSDx8+JGVX5AezD+Tvf/v2bTx+/BhHjhwRWBofzjfu4Vy34QAtllJhuLi44Pz58yL/X5T6vLdb5/iW0u4j3N5YSvkZL/mW0osXL+LHH38UsJQ6OzvTYinlIycnBxaLRZgf+fCD+YShoKAgtDyLxRI5K8BisTBmzJges7P1l5FgxmxubhbaBllZWZHq7N7Q0NAALpdLuhlUVVVBXl6eeNIfKLa2tqTAPVGm1draWrF5/YWZVrubc2/cuIEFCxYQXgY9PT2Ul5fD39+f0kEFXeeDj6SkJExNTWkJwO5+PvhBufzU7Hx6cz6EWYj5x7x58wZ1dXU4fPgw8f9cLpdIZnT69Ol+78jpbinlf6eqqqpIAfjV1dW9ElDduXMHt27dwtdff03a2cZms8FisQS2r1NhP2UYHGixlAojMTER2traIv9fWA70999/v9f14FtKx40bR7KUjhs3DomJiQLlm5qa8MUXX5DemzFjBiwtLXHy5MlBtZTykZSUhK6uLjIzM0nr35mZmSLXRw0MDATWMDMyMjBmzBiRszw8Hg9FRUW0BTiOBDMml8tFWVkZ9PT0SD6LMWPGDCgIsbi4WCAGRklJiRhsUEFvTatpaWlYvny5yM8xMTERMK0mJSWRYpQGyyhJ1/ngY2JiglGjRpEMqFQhzFLK4XCQnJxMspSmp6dj2bJlIj/H2NgYycnJmDVrFvFecnIysRPH0tIShw4dIh1z6dIlaGtrY+7cuQPa4isnJ0ca0HW1lPJ/f1tbG5KSknq0lHp5eeHvv//GoUOHBPqClJQUTE1N8ezZM7i6uhLvP3v2jBZhIAP1DHhQIcxSevnyZUhJScHOzg4sFgt3797Fr7/+KlbINVD1OdC5TWv79u3Izs5GZmYmPDw8BCylysrKOHv2LGEp7UpXS2l3pkyZgoSEBKHbIalk8uTJ+Pvvv6GrqwsDAwPExMSgurqaeBK8d+8eampqsHLlSgCdIrAnT57Az88PTk5OePPmDeLi4kj70kNCQqCvrw9VVVUipqKwsJBycVVX+FvHysvLUVpaCnNzcwEzpry8PClSnP/E09WMyeVyibVUa2trlJeXo66ujphtMTU1pW2g9/z5c8yYMQOlpaUoKSmBlZUVFBUViWBgFxcXyMvL48GDB8Qx/G1xUlJSkJWVhaqqKrhcLvHklZSUhAkTJmDy5Ml4+fIllJSUYG9vT4tym4+EhARmzZoFPz8/aGpqQlNTE35+fgKm1XPnzkFJSYkYaMyaNQvfffcd/P39YW9vj4SEBCQnJ2P//v3EMba2tvDz84Oqqip0dXXx5s0bBAUFwd3dnfJ20HE++FhaWiI7O1tgCZYO+JbSgIAAaGhoQFNTEwEBAcRsKJ8LFy5AWVkZb731FoDOh54ff/wRgYGBsLW1xbNnz5CSkoLPPvsMQOfgpXueC2lpacjLy/eY/6I/bVi0aBFu3boFHR0d6Ojo4ObNmwKW0mPHjkFFRYUYaNy+fRtXrlzBJ598Ak1NTeI8yMjIEAPhxYsX49ixYzA1NYWFhQWCgoJQVlaGefPmUdqG/sIsf4iHNkvp4cOH8ebNG4waNQpjx47FxYsXaQvS5PP06VOSpbSgoAA///wzEfzE4XD6lStDU1MT5ubm+OGHH6iusgA2NjZobGzEgwcPUFdXBy0tLWzYsIHIB1JbW0sKWFJRUSHMpFFRUWCz2fD09CTlqGhqaoKXlxfq6uogIyMDHR0dbN++nbIAN2GMBDNmZmYmpKWlMXHiRMjLy6OiogJ+fn5ETgQ5OTmBZSn+YA/oDPwbO3YsamtriTX1+vp63L17F5MmTcLKlSvR0NCAFy9eCJ1No5L58+ejra0Nf/31F2Fa3bt3b4+m1R07dsDLywt37tyBhoYGduzYQTKtvvPOO7hz5w7tplWAnvMBdF4XdHR0SOZSupk7dy7a2tpw9epVIhnZ7t27xVpKTU1NsW3bNnh7e8PHxwfq6urYtm2bQI6KweKtt95CS0sLzpw5QyS/+ve//02a0ehuKQ0MDER7ezu+++470metWrUKa9asAdC5I6+urg43btxAZWUlDAwMcODAAUp3jg0EZlAhnmFtKe1pGu2fQteb5T8ZJk338GEkpOl+9uzZUFeBEkTlyfinQddy6GDS1W1BF1Qu4YrLPvpPhUn2zsDAwMDAwEAJw1ooxsDAwMDAMJxglj/EM6wHFdu3bx/qKlDCSMkENxKmR7sGkf2ToVN2NVhQtdtlqKHbEzJYvHjxYqirMGAGY/mDQTzDelDBwMDAwMAwnGBmKsTTr0FFXl4eDh06hMDAQJSXl0NbWxtLlizBgQMHiC1cXl5e+P333xEfH4+KigokJiYOSnAZXYrnTz75RGgK3enTpxPJs6hiJCjDASAyMhJhYWGora2FlpYWlixZIjZSPTMzE76+viguLgabzcb06dPh5uZG/H9UVBTi4uKIRFdjxozB/PnzidwLdMHj8XD27FncuXMHdXV1GDduHD7//HPSLghxBAUF4csvv8TUqVPxn//8h3g/ISEBf/31F1JSUlBeXo6ffvoJ06ZNo6UN/O15srKyqKmpQWJioth0yurq6rCzswOHw0FTUxNSUlIEvi9jx46Fqakp5OTk0Nrairy8PDx//pzWGYjx48fD3t6eUJ+Hh4eLVZ9PnjyZUJ8/f/4cERERAuVsbGwwfvx4KCoqoqmpCa9fv0ZUVBTJnUMlI6V/j4Rz0R+YQYV4+hyomZWVhYkTJyI9PR3Xrl1DZmYmzpw5gwcPHsDV1ZVQjDc0NGDSpEkCW4fohq94fuedd3DgwAFwOBz89NNPYjM58hXPrq6u+Prrr+Hq6orTp0+TOuWBAwdw/Phx4sXXiDs6OlJaf74y/Pnz5/Dx8UFJSQlmz54tsP2ST1dluCi9O18Z7ufnB29vb2RkZMDd3Z3yvetdSUxMhLe3N2bOnIm9e/fCyMgIZ8+eFbmDpKKiAufPn4eRkRH27t2LmTNn4s6dOyR74evXr2Fvb4/3338fu3btgrKyMn7//XfanQCXL1/G1atX8dlnn+Hy5ctQVVXFBx980KucJUVFRfjll18EBElA51ZfMzMzIs8AXejp6cHOzg7JycnEnv8pU6aIzLgqLy+PqVOnoqysDEFBQUhOToa9vT1Jo82/kSUlJSEwMBBPnz6Fvr4+4XCgA1NTU7i7uyMuLg43btxAYWEhPD09RWabHTVqFJqamhAXFycye+zYsWPh6uqK2NhYXLlyBaGhoTAzMyMlXqKSkdK/R8K5YKCHPg8qPvjgA4wePRr379/H1KlToa+vj3nz5iEkJAQFBQWEyGbdunU4cOAAZs6cSXmlRUGn4pnNZoPD4RCv58+fQ0NDg/I1vJGgDAeAR48ewdnZGS4uLtDU1MTSpUuhpKSEyMhIoeWfPHkCJSUlLF26FJqamnBxcYGTkxMePnxIlFm7di0mTZoEXV1daGpqYsWKFeDxeMjIyKCtHTweD9euXcPGjRsxffp0mJqa4t///jeam5tx7949scd2dHTgq6++wrZt24Re4CdNmoT3338f06dPp6v6ADqfjLOyspCVlYXa2lokJiaisbFRpL3X1NQUDQ0NSExMRG1tLbKyspCdnU36DqqqqqK8vBxv3rxBQ0MD8R3rTx6Y3mJra4vk5GQkJyejqqoKERERqK+vJ+Vk6UpdXR3Cw8PFqs+1tLRQVFSE9PR01NXVIS8vD+np6bTlRBgp/XsknAsGeujToKKyshJBQUF4//33SUlzgM4vxDvvvIMbN25QnqK3t9CpeO5Ke3s7oqKi4O7uTulU2EhQhgOdf5/8/HyB1O3m5uYiUyq/efNGYIBmbm6OvLw8kVOfra2t6OjoGLD5VBwFBQWoqKggZZ4cPXo07O3tewxsO3/+PJSVlYc0TwmLxYKysrLAuS4uLhZpqFVVVRUoX1RUBBUVFeL7Xl5eDmVlZWIQIS8vD21tbVqMsUBnOzQ0NISqz7W0tPr9uUVFRdDQ0CD6F5vNhoGBASWpv7szUvr3SDgXA0FCQoKy10ikTzEVGRkZ4PF4sLS0FPr/lpaWqKqqQllZ2ZCMLulUPHclISEBjY2NmDRp0gBrTGYkKMOB/0mzhCnZu8vP+NTV1fWocO8OXx3ek3dmIPDjaPixQnxUVVVFrh8DnYmdfHx8cPXqVdrq1htGjx4NFoslkPSrpaWFlL2xKzIyMgLpqpubm8FisSAtLY3m5mbk5uZCWloaM2bMIER8GRkZAh4aqpCVlQWLxRKQhzU2Ng6ob2RkZEBWVpZwbowaNQovX75EQkLCgOorjJHSv0fCuRgII3UwQBWU7v7ortzuC8LU562trQJK3K4MpuK5K48fP8aECROI1NlUMxKU4UD/zkNvCQ0NRUJCAj744ANKNc+BgYE4evQo8fPx48cB9K0tDQ0NOHDgAL788st/rFmxJ8W4hoYGrKysiEBsBQUF2Nvbo7m5GUlJSYNZ1QGhq6sLBwcHPHr0CCUlJeBwOHB3d0dDQwNlKvrujJT+TTVDcS4YqKdPgwpTU1NISEggOTlZ6JRuamoqlJWVRU6rikOY+nzTpk3YvHmzyGMGU/HMp7y8HMnJydi5c6fY9vSHkaAMB0BovLtrmsUp3IXNYvDFYd2D2MLCwhASEoL33nsPOjo6lNZ9ypQppOUz/vpveXk56XtdWVkpMn4gPz8fhYWFJOsuf0eEs7Mzbt++TQp6pJPW1lZwuVyBWQn+jIMwmpubhZbncrnEwH/ChAnIyclBVlYWgM4+JykpCUdHR1oGFU1NTUL7hpyc3IDU587OzkhLS0NycjKAzpkpSUlJeHh4UH4jGyn9eySci4HAzFSIp08xFaqqqpg1axZOnTol0AmKi4tx5coVrFy5sl9/9P3796Ompob06mmrpqysLGFd1NTUhI6ODqF45sNXPIsKSgP+p3juSnfFM5+IiAiw2Wxaoty7KsO7oqOjg9LSUkp/F13KcKBT/DVmzBikp6eT3k9PT4ehoaHQYwwMDISW19PTI9UzNDQUwcHB2LZtGy1CNHl5eejp6REvY2NjqKqqkrbxtbW1ISEhAdbW1kI/w9DQENevX8eVK1eI15QpUzBx4kRcuXJlUJOI8Y2c3de6tbS0RC4JVlRUCC1fWVlJPFEL++4MZKayJ7hcLkpLSwXOuZ6e3oBunJKSkgKzBPxZKKrbMVL690g4Fwz00eflj5MnT8LNzQ1z5szB4cOHYWRkhKSkJHz66afQ1dXFkSNHAHSOlnNzc4l1vbS0NACdFydhwTzC1Ofilj6EQafiGejsTBEREZg0aRJtHXYkKMMBYOrUqbh69Sr09PRgaGiIqKgoVFVVEXkn/Pz8UFtbS5gJ3dzcEBkZCR8fH7i4uCAnJwcxMTEks21oaCgCAwOxdu1aqKioEDMhwr47VCEhIYHVq1fj0qVL0NfXh56eHi5dugQZGRnMnTuXKMe3KO7cuRPS0tICA1J+vEjX9xsbG0nBbgUFBUhLSwOHwxlQwFt3UlNT4eLigsrKSlRUVMDExARycnJEILK1tTVkZWWJgVNmZibMzMxga2uLrKwsqKqqwtjYGFFRUcRnFhYWwtzcHFVVVcTyx4QJE1BYWEhboPazZ88wa9YslJaWori4GOPGjYOCggKhPucbbENCQohj+LNLfPW5mpoaOjo6iK3NOTk5sLW1RXl5OYqLi6GkpARnZ2dkZ2fT0o6R0r9HwrlgoIc+DyrMzMwQFxeHQ4cOYeXKlcRTzZIlS3Dw4EGiA/j6+mLjxo3EcatWrQIAHDx4EIcOHaKm9kKgS/EMAMnJyaioqIC7uztt9R8JynAAsLOzQ2NjI+7fv4/a2lpoa2tj69atxPejrq6OlLNCVVUVW7ZsgY+PDyIiIsDhcLB06VLSjFBkZCQ6OjpIcTQAMHv2bNINnmreffddtLS04LvvvkNdXR3Gjx+PkydPks5DcXExWKy+7dBOTk7Gjh07iJ+PHTsGAFi4cCGlfSQvLw/S0tIYP348ZGRkUFNTg8ePHxNT1bKysqS2NDQ04NGjR7Czs4OZmRmampqQkJCA/Px8okxSUhJ4PB6RxKmlpQWFhYW0pnrOzMyEjIwMHB0dSepz/rS/nJycQLAv/7oDgNgCXltbiz///BMAEBsbCx6PB2dnZygoKKCpqQnZ2dlit6APhJHSv0fCuegvzKyJeIa1+pzOkfZgwrg/hg+M+2P4IG5H1j8JOrc0DyYDiYcYLtAR69YdKpeqRmIODkZ9zsDAwMDAwEAJzKCCgYGBgYGBgRKGtaVUVKKkfxritrP+k5CUHNZfl16xaNGioa4CJXzxxRdDXYUBMxKm24FO+dpIoPsWcAbhMDEV4mFmKhgYGBgYGBgogRb1eVtbG7766isEBAQgKysLHA4HM2fOxHfffUd5sqLuhIeH48GDB4Rue9myZWIV1RkZGbhz5w6Ki4vB4XAwY8YMTJ48mVTm2bNn8Pf3JxIgLVy4kFYbY3R0NCIiIlBXVwcNDQ0sWLBAZH4HoDOiPCAgAKWlpVBUVIS7uzucnZ1JZZqamhAcHIykpCQ0NzdDWVkZ8+bNo1yI1hWqz0VRURECAgKQl5eHyspKLF26FB4eHrTVHwAWL16MlStXQlVVFTk5OTh58iRevnwpsryUlBTWr1+PmTNnQkVFBWVlZbhy5QoCAwOJMlOmTMHGjRuho6ODwsJCXLhwQagGmkp4PB4CAgIQGRmJpqYmGBgYYOXKldDW1hZ7XGJiIum77+npSfruZ2ZmIiQkBLm5uaitrcXWrVtp7RsjQRseGRmJhw8foq6uDpqamli8eDEpiV93Xr9+DV9fX5SUlIDNZmPatGnE1mwAePnyJR48eIDy8nJ0dHRAXV0dU6dOhYODA21tADp3zVlZWRHnIj4+HmVlZSLLa2howN7eHkpKSmhsbERKSgpJBighIYFx48bB2NgYcnJyhPxOXDr8oYCZqRAPLerzxsZGJCQk4F//+hcSEhLg5eWF9PR02qee+b9r9uzZ+Oyzz2BiYoLTp0+LVAZXVFTg999/h4mJCT777DPMmjULt2/fxrNnz4gy2dnZ+OOPP+Do6Ih9+/bB0dERly5dok1y8+LFCwQEBGDq1Kn44IMPYGhoiMuXL4vUe1dWVuLy5cswNDTEBx98gKlTp8Lf35/YLw50JgC7dOkSqqqqsGbNGnz88cdYsmQJrcsydJyL1tZWqKqqwtPTc1CWlDw8PPDBBx/gv//9L7Zu3YoXL17g+++/FxuxffDgQdjb2+PHH3/E+vXrcfjwYeTm5hL/b2VlhQMHDiA4OBhbtmxBcHAwDh48KNKnQxUhISEICwvDihUr8Omnn4LNZuPEiRMis2oCnX390qVLpO/+hQsXSN/9lpYW6OrqYsWKFbTWHxgZ2vBnz57B19cXM2fOxO7du2FsbIzz58+Ttld3paKiAufPn4exsTF2796NGTNmwMfHh7R1V1ZWFjNmzMCHH36IvXv3wtHRETdu3CByA9GBgYEBHBwc8OrVKwQEBKCsrAweHh4id8LIy8vDw8MDZWVlCAgIQFJSEhwcHEgJtGxsbIiUBX5+fsjIyMCUKVNo0yH0F0YoJh5a1OccDgfBwcFYsWIFzM3N4eLighMnTiA+Pp50gaWasLAwuLi4wM3NjXgyVlZWFvkUGBERAWVlZSxbtgxaWlpwc3ODi4sLQkNDiTIPHz6Eubk5Zs+eDU1NTcyePRtjx44lKbmpJDIyEg4ODnB0dCRmKTgcjsATFp+nT59CSUkJCxYsgIaGBhwdHWFvb09qc3x8PJqamrB27VoYGBhAWVkZhoaGPT6lDgQ6zoWBgQGWLFkCBweHQYnvWL58OQICAhAQEIDc3Fz89ttvKC0tFTk4dnR0hI2NDfbt24eEhASUlJQgNTWVlK317bffRlxcHK5evYq8vDxcvXoVCQkJhESJDng8HsLCwjBnzhzY2tpCR0cH69atQ1tbm9j0xw8fPoSFhQXmzJkDLS0tzJkzB+bm5ggLCyPKjBs3Dp6enrC1taWt/nxGgjb80aNHcHJygrOzMzFLoaSkREos1pWoqCgoKytj8eLF0NTUhLOzMxwdHfHo0SOijKmpKSZMmABNTU2oqanB3d0d2tratOapsLCwwOvXr/H69WvU1tYiPj4ejY2NIuV+ZmZmaGhoQHx8PGpra/H69WtkZWWRBtP8RIqFhYWor69HRkYGioqKaB9wM1DLoKnPa2pqICEhQZtgqb29HXl5eQIXGAsLC5GdKycnR2j53NxcQrctrIylpSUtHba9vR2FhYUC2RhNTU1FDsby8vIEypuZmaGgoIBoQ2pqKvT09ODr64ujR4/il19+wcOHDwkfBR3toONcDCaSkpIYO3aswE03Li6O5AbpyqRJk5CWloZVq1bh77//xp9//okdO3aQMsNaWVkJfGZsbCzGjRtHfSP+PxUVFaitrSX9faWkpGBqakq4O4SRnZ0t9Lsv7hi6GAna8Pb2dhQUFAjceMeOHSty5vPNmzcC5c3NzZGXlye0X/B4PGRkZKC0tFTskspAYLFYUFFREViWKCoqEul9UldXFyhfWFgIVVVV4ol91KhRAm3iL+cw/HMYFPV5c3Mz9u3bhzVr1tA2bd0f3XZtba1I3XZ9fT04HI7IMnRESjc2NoLL5QpItxQUFFBfXy/0mLq6OpiZmQmU76oMr6ysRHV1NWxsbPDuu++ioqICvr6+4HK5mD59OuXtoOtcDCYcDgejRo0SmJauqqoSOR2rra2NCRMmoLW1FQcOHACHw8HHH38MNpuNH374AUBnymVhnylKTkYF/O+qsL+vqGUB/nF9OYd0MhK04f3pF3V1dSL7Bb9/A51/h2+++Qbt7e1gsVh46623RM4aDBT+uei+dNbc3CzwsMlHRkZGaHkWi0XI7YqKimBhYYHS0lLU1dVBS0sLY8aMGXbLBMOtPsMN2tXnbW1tWLVqFbhcLk6dOiXy2P6oz4UhTFHdH7p+Dp0K755+N//39aV89/d5PB7k5eWxZMkSsFgs6Orqora2FuHh4bQMKkTVi4pzMdj0pc58hfWRI0eItMunTp3CoUOHcPz4cWIKviet+ECJjY3FtWvXiJ/fe+89kb+np9893C6gI1Eb3tf6CysvLS2NPXv2oKWlBRkZGfD19YWKiopYkSId9LW/dCUuLg7Ozs5YuHAhgM7lq6ysLNpmXPrLcOsTww1a1edtbW1YsWIFsrOzERoaKnaWQpj6/J133unRVMpHnG67+0ifD5vN7lG3zWaz+/SZA0FOTg4sFkugTg0NDX1ShtfX14PFYhFPcIqKihg1ahTJTaGuro76+nq0t7dTHp9A17kYTGpqatDR0SEwg6CsrCwyqK6yshLl5eXEgALonL5msVhQV1dHQUGBUGW6kpKS2BmDvjJhwgTSbqH29nYAnTMPXWd8hD0Fd0XYd7+nY+hiJGjD+f1CWH8V9TcV17+79gsWi0Vcd3V1dVFaWorQ0FBaBhX8cyEjI0N6X9hsBJ/m5maB8tLS0uByucTDZEtLCx4/fkzMXjQ1NcHW1lbkLC3D8IQ29Tl/QJGRkYGQkBCoqqqK/Wxh6vOVK1f2um6SkpLQ09MTiHhOTU2FkZGR0GMMDQ0FvBypqanQ19cnLKSGhoZ9+syBICkpCR0dHcIeySczMxP6+vpCj9HT0xNaXldXl2iDgYEBKioqSDEUFRUVUFRUpCXgka5zMZi0t7cjPT0dEydOJL3Pj3gXxqtXr6Cqqkq6eOrp6aGjo4PYapecnCyw1W/ixImkYM6BIiMjA3V1deKlpaUFNptN+vu2t7cjMzNT7FOgkZGR0HMyFE+OI0EbLikpCV1dXaSnp5PeT09PF7ll3MDAQGh5PT29HuvIH0xSDZfLRWVlpUCgt7a2tkifS1lZmdDyFRUVArMbXC4XTU1NkJCQgL6+PklkxzD86fPuj5MnT6KlpQVz5szB48ePkZeXh3v37mHWrFmE+ry9vZ2Icr9y5Qo6OjpQXFyM4uJikVHY0tLSYLPZpFdflz48PDwQFRWFqKgoFBcXw8vLC1VVVUSuA19fX/z1119E+cmTJ6OqqgpeXl4oLi5GVFQUoqOjSUsCU6dORWpqKoKDg1FSUoLg4GCkpaVh2rRpff3T9YpJkyYhPj4ecXFxKC0thb+/P2pqauDk5AQACAoKIuyEAODk5ITq6moiT0VcXBzi4+NJ+R2cnJzQ2NhI5BtITU3Fw4cPBXJZUAkd56K9vR35+fnIz89He3s7ampqkJ+fL3Zv/EC4efMm5s+fj3nz5kFfXx/vv/8+NDU1cffuXQDAli1bsH//fqJ8SEgIamtr8fnnn8PAwADW1tbYvn07AgMDie/97du34ejoiFWrVkFPTw+rVq2Cg4MDbt++TUsbgM6bpIeHB+7fv4/nz5+jsLAQf/31F6SkpEiDpj///BM+Pj7Ez9OmTSO++8XFxQgODkZqaiopN0hLSwtxToDOwWp+fj6lMy98Xr16hbFjx8LMzAwcDgdOTk4C2vDuwjgVFRWoqKiQtOFdg8Wtra2ho6MDRUVFcDgcjBs3DqamprTlqZg6dSqePn2Kp0+foqSkBD4+PqiuroaLiwsAICAggLR05erqiqqqKiJPBf/YqVOnEmUePHiA9PR0VFRUoLS0FI8ePUJcXByteSpSU1NhYmICY2NjsNls2NvbQ05Ojsg7YWtrC1dXV6J8RkYG5OXlYW9vDzabDWNjY5iYmCAlJYUoo6qqCj09PSgoKEBdXZ3o+8nJybS1oz8wW0rFQ4v6PCcnB76+vgAgsNUsLCyMthuyvb09GhoaEBQUhJqaGmhra2PHjh3EdHNtba2Abnv79u24c+cOwsPDweFwsGzZMlKdjY2N8e6778Lf3x8BAQFQU1PDxo0bxSajGgjW1tZobGxEWFgYkRxn/fr1RHBgXV0dampqiPIqKipE/aKjo8Fms7FgwQLSDgUlJSVs3LgRAQEBOHHiBNhsNtzc3Gg1dtJxLmpqaoiARwAIDQ0lpnh37dpFeRvCwsLAZrOxfv164nu9b98+ItmSqqqqQEDyJ598gl27duHMmTOora3Fw4cPceHCBaJMUlISvv76a2zevBmbNm1CYWEhvv76a9LFlQ5mzpyJ1tZW3LhxA42NjTA0NMTOnTtJsyqVlZWkC52xsTE2btwIPz8/+Pn5QU1NDZs2bSJ999+8eYNff/2V+NnLywsA4Ozs3Ouly94yErThtra2aGhoQHBwMJEUbvPmzWL7xZYtW+Dr64vIyEiw2WwsXrwY1tbWRJnW1lZ4eXmhuroaUlJS0NDQwJo1a2jd5vvmzRuMHj2alIjs4cOHxLmQkZEhnYuGhgaEhYXBwcEBY8eORVNTE+Lj45GXl0eUGTVqFGxsbKCgoIC2tjYUFhbiyZMnaGtro60dDNQzrNXnQUFBQ10FShgpDpOhWEunmu+++26oq0AJI8H90fWG8k9mpGx5HAnuj3feeYf239H1oW6g0LWrraqqCrt27SIe7hctWoQTJ070OqXD9u3bcfbsWRw7dgwff/xxn3434/5gYGBgYGAYQaxZswbPnj3DvXv3cO/ePTx79qzXM4fe3t6IiYnpt1Ljn6+dZGBgYGBgYAAApKSk4N69e4iOjibi5s6dOwdXV1ekpaWJ9T0VFBRg586dCAoKwoIFC/r1+4f1oGIoMinSgaiI6H8aI0HhHhwcPNRVoISuTpR/KnS6KQaTkaJwH2gSsf8rUBlgKSw/k7S0NKSlpfv9mVFRUeBwOKRAfBcXF3A4HDx58kTkoILL5WLdunX49NNPB5Thl1n+YGBgYGBgGAK+/fZbcDgc0uvbb78d0GcWFxcLTV2voaEhNvfK999/D0lJyQEHvdOiPgeAQ4cO4fr168jLy8Po0aPh4OCAI0eO0LqNEegUU4WFhRGR1UuWLBGr287MzISPjw+Ki4vBZrMxffp0TJo0ifj/qKgoxMbGEidjzJgxWLBgAQwMDGhrw7hx42BjY0NEuEdGRor8MsjJycHV1RXq6urgcDh4+fIlnjx5IlBu9OjRcHJygpGREaSlpVFXV4eoqChaBW+PHz8m1Ofa2tp46623xCbj4avPi4qKwOFwMHPmzCHX0AOdWQJPnTqFmzdvora2FtbW1vjqq6/EtuXOnTv46quvBN5PSEggnkLOnTuH4OBgZGdnQ0ZGBra2ttizZw8tOVB4PB68vLwQGhqKhoYGmJqaYsOGDRgzZozIY/Lz83Hr1i1kZ2ejvLwca9euxbx580hlUlJS4O/vj+zsbFRXV2P37t0CuT2oZPz48cT2xcrKSoSHh4tUY8vJyWHy5MlQV1eHkpISnj9/LlRoZ2Njg/Hjx0NRURFNTU14/fo1oqKiaJspNTU1hbm5OWRlZVFTU4PExESxs5nq6uqwtbUFh8NBU1MTUlNTBba8jh07FiYmJpCTk0Nrayvy8vLw4sUL2vw+QOe18fHjx8QutYULF4r97mZlZcHf359QuE+ZMoXYSgt0ZtS8deuWwHHffPMNpKSkaGlDf6BypmL//v3Ys2cP6T1RsxSHDh0SSBDZndjYWADC6yguE3R8fDx++eUXJCQkDLh9fR5UZGVlwdXVFWPHjsW1a9cIs9ynn36KwMBAREdHQ0VFBWPHjsXJkydhbGyMpqYmHDt2DLNnz0ZmZiZt0dKJiYnw9vbG22+/DSMjIzx58gRnz57Fvn37hPoaKioqcO7cObi4uGDt2rXIzs7GrVu3oKCgQNyoMjMzYW9vDyMjI0hKSiI0NBRnzpzB559/TosczcTEBG5ubggPD0dxcTGsrKywYMEC3LhxQ2hmOb7eOSEhgbTNrCssFgsLFy5EU1MTgoODUV9fT2zboov4+Hh4eXlhxYoVMDY2RmRkJE6fPo0vv/xSqOeivLwcZ86cgZubG9avX4+srCz8/fffUFBQILbGZWdn49KlS1iwYAGsra3x4sULXLx4Ebt376Ztiy8AXLhwAZcvX8aRI0dgaGiI33//HVu2bIG/v7/YbJ8KCgrw8/Mjvdf1ghEbG4vVq1djwoQJaG9vx6+//oqtW7fC19eX8qloPz8/BAQEYMeOHdDS0oK3tze+/fZb/PTTTyJ9DS0tLdDQ0ICzszP++9//iiyjr6+PqVOn4vjx45TWuTumpqZwd3fHo0ePUFRURBhSr169KrJvNDU1IS4uTuT2yrFjx8LV1RWhoaEoKiqCkpISZs6cCQAijboDQU9PD7a2tkhISEBZWRlMTU0xZcoU3Lt3T+gyiry8PKZMmYKsrCxER0dDXV0d9vb2RH4QAEROlKdPn6K8vByKiorEwxtdy2R8XfzixYthaGiImJgYXLp0CXv27BF6XaysrMSlS5fg5OSElStXIicnBz4+PpCXl8eECROIctLS0vjkk09Ixw6nAQXV9GWpY+fOnVi1apXYMoaGhnjx4gWx7b0rZWVlIu274eHhKC0tJSVZ7OjowN69e3H8+HGRwjth9HlQ0VV9zr8Y6evrw87ODiYmJvjyyy9x+vRprFmzhnTczz//jAsXLuDFixeYMWNGX39tr+AndOKPfpcuXYrU1FRERkYS+eS78uTJEygpKWHp0qUAAE1NTeTm5iIsLIwYVHSPmF25ciWeP3+OjIwMODo6Ut4Ga2trpKamEgl9njx5Aj09PVhZWeHp06cC5evq6hAZGQkAIhXQFhYWkJaWhre3N/HkQnfq27CwMLi6usLNzQ0AsGzZMqSkpCAiIkKoOjwyMpJQnwOd1tvc3Fw8ePCAuCGEhYURGnp+mczMTISFhWHjxo20tIPH4+Gvv/7Ctm3bMGvWLADA0aNHMWXKFPj7+2PFihUij5WQkBA7gD579izp58OHD8Pd3R3JycmUPu3zeDzcu3cPS5YsIb6zO3bswPvvv48nT56I7I8mJibELN/169eFlrG1tR0U7Tn/dyUnJxPJkCIiIqCvr48JEyYIVYfX1dUhPDwcQKcdVhhaWlooKioislbW1dUhPT2dNvW5ubk5srOzCdNrYmIitLS0YGJigpcvXwqUNzExQWNjIxITE4n6KSsrw9zcnBhUqKqqory8nJh1bGxsRG5uLq2SuoiICEycOJFIyufp6Yn09HRER0dj7ty5AuVjYmKgpKQET09PAJ1T8QUFBQgPDycNKiQkJEbE1nU6UFNTE2mB7Yqrqytqamrw9OlT4vzExMSgpqaGuB53Z926dcRgms+cOXOwbt26Pl9bB0V93trairNnz4LD4dA2Vc3Pttg9CMXc3FzkKCsnJ0egvIWFhUitMNDZFmEOAirgOyK679/Pz8+HlpZWvz/X0NAQJSUlmDx5MtavX48VK1bAzs6Otoxu/VGfi9Js96ShF/eZVJCfn4/y8nLSktjo0aMxceJE4kIvisbGRsycORPTp0/H+++/32OCK34+E6r3rpeVlaG6upp08ZaSkoKFhQWRAXG4w2KxoKGhIdA38vLyBtQ3ioqKoKGhQaxBs9lsGBgY9OnJrLewWCwoKysLLGUWFxeLvFmoqqoKLa+iokL037KyMigrKxODCHl5eWhra9NiWgX+p3Dvbkc2MzPDmzdvhB7z5s0boeXz8/NJ19rW1lZ89913OHr0KP744w8UFBRQ34ABMtwzalpaWmLu3LnYunUroqOjER0dja1bt2LhwoWk+52FhQXu3LkDoPN7Nn78eNJLSkoKWlpaYneLCINW9bmfnx9WrVqFxsZGaGtrIzg4WGTnERYF29bW1uupL3FaYVFJXcRphUXptv38/MDhcGjRCsvIyAjVOzc2NkJPT6/fn6uoqAgdHR1kZGQgICAAHA4H7u7uYLFYiI+PH2i1BejPueithr77DhRhIjIq4a91d3fXqKqqir1oGxsb48iRIzAzM0NDQwP++usvrF27Fl5eXkLjcXg8Hn744QfY29sLXHwHSnV1NQDBwQqHw/nH7EySlZUFi8USWCJobGwc0AA/IyMDsrKyxAzZqFGj8PLlSyQkJAyovsIYPXq0SGV4d9kWH1lZWYFBRXdleF5eHmRkZDB9+nRISEiAxWIhMzNTwNtCFY2NjSL7d3dPCR9h0rTuCncNDQ0sX74cmpqaaGlpQWRkJM6cOYOPPvqoV0/oDP/jypUr2LVrFzGru2jRIpw8eZJUJi0tjdJEXnxoVZ97eHjg2bNnKC8vx7lz57BixQrExMQIjUwVZilds2ZNnzOk9VXvLErPLeyYBw8eIDExER988MGgrvMNVO8sISGBpqYmPH78GDweD+Xl5ZCXl4eNjQ0tg4quv5eK8uI+h+qEsH5+fjh06BDx8+nTp4XWQVzQE9AZ/Nd1Vs7Ozg5vv/02rly5IjQb5uHDh5Genk7yofSXyMhIUmrwTz/9VGi5ntrwfwFdXV04ODjg0aNHKCkpIQbcDQ0NiIuLG+rqCaX7OVNXV4elpSUSEhJQUVEBBQUF2NnZwcrKalC9GX39PnW/1urr65PW9A0MDHDixAk8efJE6JIpg2hUVFRExkHx6ena2d/ZOlrV5/Ly8jA1NYWpqSlcXFxgZmaGCxcukCRMfIRFwYaFhfW6bqJ02+JUzcKenIVphfl1CQkJwXvvvdfvTGM90dzcDC6XK7C0JCsrOyC9M//JouuXqKqqivibUR0hLu5ciMp1IUqz3ZOGnmoVt4eHB2mZgB/MWl5eToqPqKys7NG82xUWi4Xx48cLnR4+cuQIHj58iMuXLw9oKp+Pvb09accT31ZZU1NDCljurkIfzjQ1NQlddpSTkxtQnghnZ2ekpaURN9+KigpISkrCw8OD8kEFf+m0L8rwpqamHpXhEyZMwJs3b4g4jZqaGkhKSmLixIm0DCrk5OREKtwVFBSEHqOgoCBS4S5qponFYmHMmDHDbjbt//pAvCdoU58Lg8fjCSxx8BFmKe3LbICkpCTGjBnTJ62woaGhQPm0tDQBrXBoaCju37+P7du3i1SQUwGXy0VZWZnAUoeurq7Y/cU9UVxcLHDzUFJSIpYpqIavPu8+/ZqWliZyy5mRkZFQVfpga+jl5eVhYGBAvExMTKCmpkbaptva2oq4uDjY2dn1+nN5PB5SU1NJAxMej4fDhw8jJCQEFy9eFLu9sy/IyspCS0uLeOnq6kJJSYkUCNje3o7U1FTKl1rogsvlorS0VKBv6OnpDahvSEpKCjyx8Z+4qb55cLlcVFVVCQwcNTU1Rd44KyoqBIJGtbS0UFlZSdR71KhRQtsA0HMD5CvcMzMzSe9nZmaK3GpvYGAgUD4jIwNjxowRqXDn8XgoKipiAjf/YdCiPm9oaMAXX3yB6OhovHnzBgkJCdiyZQvy8/OxfPlyOtoBoFPVHB0djZiYGJSUlODOnTuoqqoiIl79/Pxw5coVorybmxuqqqrg7e2NkpISxMTEICYmhqR2fvDgAQICArBq1SqoqKigtrYWtbW1IgdHA+XFixewsLCAubk5lJSU4ObmBkVFReKJw8nJiVQ/oHOwp6qqCklJScjKykJVVZX0RJqUlARpaWlMmjQJHA6H2K2TlJRESxsAQfX57du3UVlZSVKf//nnn0T5SZMmobKykqQ+j4qKIu1MEKbiTktLE/h7UImEhATWrVuHc+fOISQkBBkZGfjyyy8hIyNDSmO7f/9+HDt2jPj51KlTiIiIQF5eHlJSUvCvf/0LaWlppN0i33zzDfz8/PDDDz9ATk4OZWVlKCsrE/nUOpA2zJ07F76+voiNjUVeXh7OnDmD0aNHk6LBT58+Tdrl0d7ejpycHOTk5KC9vR1VVVXIyckh3cSbm5uJMkBn0GBOTg4tT5fPnj2DlZUVLC0toaysjMmTJ0NBQQGvXr0C0Bn13j2CnR8xLyUlBVlZWaipqZH6Rk5ODiZMmAAzMzMoKipCT08Pzs7OyM7OpnxpDfjfwNrIyAiKioqEcZWfd2LChAmkXD6vX7+GvLw8bG1toaioSBzbdXBdWFgIU1NT6OnpQV5eHpqamhg/fjwKCwtpaQMATJ48GbGxsYiNjUVpaSnu3r2L6upqou737t3DjRs3iPLOzs6oqqqCn58fSktLERsbi7i4OLi7uxNlQkJCCIV7YWEhbt26hcLCQlIuC4bhDy3q8+bmZqSmpuLy5csoLy+HqqoqHB0dER4ePqD0nz1hZ2dH6Lb5CZe2bdsmViu8detWeHt7IyIiAhwOB0uXLiWthUdGRqKjowN//PEH6XfNmTNH6NapgfL69WvIyMhg4sSJRIKfgIAAYguovLy8wMi960BNQ0MDZmZmqKurIwZQDQ0N8Pf3h5ubG5YvX46Ghga8fPmS1lTPDg4OaGhowL1794hz8d577xHnoqamhnQu1NTUsGPHDnh5eSE8PBxsNhtvv/22gIZ+w4YN8PPzg7+/P+0aej6bN29GS0sLvvnmGyL51blz50hLZEVFRaSnwtraWhw6dIjIG2BhYYHLly+TconwL7obNmwg/b7Dhw8T25ypYuHChWhtbcUff/yBhoYGmJiYYN++faSltoqKClIbqqqq8OWXXxI/+/v7w9/fH5aWlkRir6ysLBw5coQow1/HdXd3x44dOyhtQ2ZmJmRkZODo6Ah5eXlUVFTAz8+PmFaXk5MT6Btd9/VraGjA3NwctbW1xIA2NjYWPB4Pzs7OUFBQQFNTE7KzsxEdHU1p3fnk5eVBWloa48aNg4yMDGpqahAeHk4s4cjKypKWAxoaGvD48WPY2dnB1NQUTU1NSExMJLaTAiAeOPga8paWFhQWFgrdokoVNjY2aGxsxIMHD1BXVwctLS1s2LCBGLDV1tYSAcJA5xr/xo0b4efnh6ioKLDZbHh6epKWGpuamuDl5YW6ujrIyMhAR0cH27dvH1CQOh0wyx/iGdbq84CAgKGuAiXQmbVyMDE2Nh7qKgyY6dOnD3UVKGEkuD/ounEPNiNFfT569OihrsKAoXowLgwqXS8j0bfCuD8YGBgYGBgYKGFYW0oZGBgYGBiGE8zyh3iG9aCitbV1qKtACeLEU/8kRCWu+ifRPSPjP5UXL14MdRUGTE8ZRv8pdM22+k+GrgycDP+3oM1S2pXt27fj7NmzOHbsGD7++OOB1lksUVFRePToEWHO8/T07NGc5+fnR5jzpk6dKjLa+NmzZ7h27RqsrKzw7rvv0tUEAJ3bqQICAhAZGYnGxkYYGhpixYoVPebISExMhJ+fH2Hx9PT0JAU7ZmRkICQkBHl5eaipqcG2bdtoS50eFRWF8PBw1NXVQUNDo9cWw9LSUigqKmLq1KkCVtumpibcv38fSUlJaGpqgrKyMubPny/Se0IFPB4P//3vfxEYGIj6+nqYm5vjgw8+EBsgGhgYiJCQECIvhampKTZu3Cgy5e3169fxxx9/YMmSJZQHOAKdKXn5gXzV1dXEDilhyMrKwsnJCWpqamCz2UhOTkZMTAypjIGBAWxsbKCoqEjkJHn16pWAPZNq3N3dMXPmTHA4HBQVFeHWrVsif6eJiQkWL14MTU1NjB49GpWVlYTFmA+LxcKcOXPg7OwMJSUllJSUwMfHh/akUTweD7du3UJoaCjq6+thamqKTZs2iQ1KzMvLw82bN5GVlYXy8nKsX78e8+fPJ5W5f/8+QkJCUFZWBqDTqvzWW2/1aftzb4mMjBQwQouLu8rMzISvry/JCN1191FUVBTi4uJIRuj58+fTaoRmoJ4+x1RkZWVh4sSJSE9Px7Vr15CZmYkzZ87gwYMHcHV1RWVlJam8t7c3YmJiaEsY1ZXnz5/j7t27mD59Onbt2gVDQ0NcvHiRtMugK5WVlbh48SIMDQ2xa9cueHh4wNfXV2jUdFVVFfz9/WnRUgsjODgYoaGhWLFiBT777DOw2WycPHlS7HbDrKwsXLx4EU5OTti/fz+cnJxw4cIFkhujtbUVY8aMESvCooIXL17A398fHh4e+PDDD2FoaIg//viDFBHelcrKSvzxxx8wNDTEhx9+CA8PD9y9e5fYLgh0bnG8cOECqqqqsGbNGuzZswdvvfUW7Qmcbt68iTt37uD999/Hr7/+ChUVFXzxxRdiA7ZevHiBadOm4fvvv8exY8egoaGBL774QuhWy7S0NAQGBtL23TIyMoKzszOeP38OHx8flJSUYPbs2SINq3zz7fPnzwX6M5+WlhbCVOnt7Y2MjAy4u7tDV1eXljYAnUm93n77bQQFBeHbb79FZmYmPvjgA6EGYn4dHz16hOPHj+Obb77BvXv34OnpSZpZ8PT0xOTJk3Hz5k188803iIiIwNatWynLGSIKX19fBAQEYOPGjTh69CiUlJRw9OhRsUnuWltboaGhgTVr1og0JKuqqmL16tU4cuQIjhw5gnHjxuGnn36ifIaOb4SeOXMm9u7dCyMjI5w9e1bktbaiogLnz5+HkZER9u7di5kzZ+LOnTt4/vw5Ueb169ewt7fH+++/j127dkFZWRm///67yGvGUDHc3R9DTZ8HFV0tpVOnToW+vj7mzZuHkJAQFBQUkLagFRQUYOfOnbhy5cqgpLUODw+Ho6MjnJycoKmpiUWLFoHD4YiMMo+OjoaSkhIWLVoETU1NODk5YeLEiXj8+DGpHJfLxfXr1zFr1ixazX98eDwewsLCMGfOHNja2kJHRwfr1q1Da2srYmNjRR4XFhYGCwsLzJkzB1paWpgzZw7Mzc1JT2Z8XTTdZsnw8HBMnDgRjo6O0NDQgKenp9hz0dViqKGhAUdHRzg4OJDORXx8PJqamrBu3ToYGhpCWVkZhoaG0NbWpq0dPB4Pd+7cwapVqzB58mQYGhpi7969aGlpEZvx9fPPP4enpydMTEygp6eHjz76CDweT2DXRlNTE3744Qd89NFHIrMRDpTx48cjPT0d6enpqKmpQUxMDBoaGkTO7tTX1yMmJgaZmZkilyCLi4vx5s0b1NTUoK6uDsnJyaisrKTN7gkAM2bMQFRUFJ48eYKSkhLcvn0bVVVVpFwHXcnPz0d8fDyKiopQWVmJ2NhYpKSkkJYjnZycEBQUhKSkJFRUVCA8PBwpKSm0mZSBzu9UYGAglixZAicnJ+jp6eH9998nfBeiMDExwdq1a+Hm5gZJSeGTzA4ODrCzs4OOjg50dHSwatUqyMjIUC6Oe/ToEWGE1tTUxNKlS6GkpCSy/l2N0JqamnBxcYGTkxMePnxIlFm7di0mTZoEXV1daGpqYsWKFeDxeP8Y6R1DJ7RZSrlcLtatW4dPP/2U1twUfESZ88aOHSvSnJebmysgBhs7dqyAOS8kJATy8vKERpZuKioqUFtbSxK3SUlJwdTUVKyRMzs7W0D2ZmVlRaTvHSza29tRWFgo1Eooanttbm6u0HNXUFBAnIvk5GTo6+vDx8cHR44cwfHjxxEWFkZLVlA+xcXFqKqqgr29PfHe6NGjMWHChD7FBLS0tKC9vV0gj8Jvv/0GJycn0udTCYvFEio/KygoEOrg6S/a2trgcDgDym4pjlGjRkFPT0/gb56SktLrrc5jxoyBsbEx6SYlKSlJpGLn09bWRkpzTjWlpaWorq4m5SyRkpKCpaWlSCFXf+ByuXjy5AlaWlooFSDyjdDdP1OcEfrNmzdCDdI9GaE7OjpG5LbLkQxtltILFy5AUlISu3btoqSiPcH3W3R/2hOWc55PXV2d0PJdzXk5OTmIjY2lPRakK/yAyO43IDabLXI6mn+cMBMgnRZPYdB1LqqqqpCVlQVbW1ts2LAB5eXl8PHxAZfLpe3Jkj+d232KXVlZWWRMgjAuXrwIVVVV0tr2w4cPkZmZiV9//ZWaygpBWlpaqPm2qalpwBdrKSkprFq1CqNGjQKXy0VUVBRtwX4KCgoYNWpUn3wyfA4fPkwc7+/vT0q5zp+VyMzMRHl5OczNzWFtbU3r1DTd1tjc3Fz861//QltbG2RkZLB3715Kl3PEWYjF9e+eLKXd8ff3p80IzUAftFhKs7Oz8csvvyAhIaHXnXOg6nM+A7WUdn2/paUF169fx7Jly0SuP1PB06dPce3aNeLn999/X2jdepOnrD/HDCYDMcZyuVzIy8tj6dKlYLFY0NXVRW1tLcLDwykbVISGhpJu8l9//bXQcn0xMt68eRMPHz7EDz/8QCQYKisrw5kzZ3D06NFBSTrU/XswUPMt0Nk/vb29ISUlBR0dHTg5OaGuro622QpR9NSOY8eOQVpaGoaGhli8eDHKysoIO++tW7ewZs0aHDhwgDD4RkVFwdXVlbL6RURE4Ny5c8TPn3/+OYC+X6t6i46ODr7//ns0NDTg6dOnOHXqFA4ePEh5nEhfzb19ITQ0FAkJCYNuhO4NIzUWgiposZQ+efIEpaWlJPlWR0cH9u7di+PHjwudIhOmPl+5ciUpza44+mPOEzay7mrOKykpQVVVFS5fvkz8P/8Ctn//fnzyySd9MlWKwtramrSTgG+V7G6R7OmpTJjFs76+ftCFPPxzwU8t3rUufTkXDQ0NJIshm80Gi8UCi/W/VTsNDQ3U1dWhvb1d5DpzX3BxcSHFGvBjCqqqqkjnurq6WmSAYFdu3bqF69ev49tvvyVN02dkZKC6uho7d+4k3uNyuXj16hV8fX1x9+5dkaKlvtDS0iLU7ikjIzMg8y0f/jmrrKwEh8OBtbU1LYOK+vp6dHR0CHz/ezMTV1FRAaBzyySbzcaCBQuIQUV9fT3Onj0LSUlJyMvLo6amBosXLyaOoQIHBwdSHAd/uaX7d6impoaSoGNJSUlCWmZiYoLXr18jMDAQW7duHfBnA6ItxH3t390txHwGwwjNQB99ugp3tZTu3r2bFFfBt5SuX78e69evx6xZs0jHzpkzB+vWrcPGjRuFfrYw9XlQUFCv68Y352VkZGD8+PHE+xkZGbCyshJ6jL6+vsAabVdznrq6Onbv3i1Qp5aWFiIIlApkZGRIemMejwc2m43U1FRii1l7ezsyMzOxePFikZ9jZGSElJQUUirqvqw5U4WkpCR0dHSQkZFBiqfJzMwUuXSmr68vYDXNyMiArq4ucXM1MDDAs2fPwOVyiYEF361BxYAC6BwQdb0B83g8KCsrIzExkbgxtLW14eXLl9i0aZPYz7p58yauXbuGI0eOCEzh2tra4syZM6T3/vOf/0BPTw8rVqygZEABdA5UKioqoKOjQ4ot0tHRoTx9vISEBGX17k5HRwfy8vJgYWFB2jFgYWHR55wdwr4r7e3tqKmpAYvFgp2dHRISEgZcZz6ysrKkayWPxyOssfwdP+3t7UhJScGaNWso+71df1/3uJGB0NUI3TUuJD09XWT8nIGBgcA23fT0dKFG6JCQEGzbtm3YOT8Yekefr8QnT56Em5sb5syZg8OHD8PIyAhJSUn49NNPCUupioqKwBO8lJQUtLS0RO7Tl5aWhrS0tMAxfcHd3R03btzAmDFjoK+vj6dPn6K6uprIOxEYGIja2lqsXLkSQOdT6ZMnT3D37l04OTkhNzcXsbGxWL16NanOXeFfHLq/TyUSEhLw8PBAUFAQ1NXVoaGhgaCgIIwePRqOjo5EucuXL0NJSYkYaHh4eODYsWO4f/8+rK2t8eLFC6SmppIGa83NzcQedqDzKS4vLw/y8vKU7mxxd3fH33//LXAuuloMa2tria2tzs7OiIqKgp+fH3Eu4uLiSDNVzs7OePLkCfz8/ODq6oqKigo8fPiQtNedaiQkJLB06VJcv34dOjo60NXVxfXr1yEtLU2yo/74449QVVUlBho3b97En3/+ic8//xyamppELAz/BiMnJyeQ50JGRgZsNptyQdqrV68wZcoUlJeXo7S0FObm5lBQUCAGcQ4ODpCXlyfttOF/F6SkpCAjIwMVFRVwuVwiHsDa2hrl5eXE0+aYMWNgampKilegmgcPHuDdd99Fbm4usrKyMHnyZKioqCAiIgIAsGjRIigpKRGysClTpqCyspKIfTExMcHMmTNJOw4MDQ3B4XCQn58PJSUlLFiwABISEggODqatHRISEpg3bx68vb2hpaUFbW1t3LlzhzAJ8/ntt9+goqJCXI/4AZJA5yCrsrISOTk5kJGRIa5H165dg62tLVRVVdHc3IwnT54gOTkZ+/fvp7QNU6dOxdWrV6GnpwdDQ0NERUUJGKFra2uJQZKbmxsiIyPh4+MDFxcX5OTkICYmBmvXriU+MzQ0FIGBgVi7di1hhAaE3xuGEmb5Qzy0WEqHiq7mPH5Clo0bNxJTjHV1dQLmvE2bNuHu3buEOW/RokUkc95QMWvWLLS1teHGjRtE8qudO3eSZjSqqqpIX3BjY2PCBOjn5wc1NTVs3ryZlP8gNzcXv/zyC/Hz7du3AXTesNevX09Z/a2trdHQ0EBYDDU1NUkWQ2HnYsOGDfD390d0dDRhMew666SkpIRNmzbB398fv/76K9hsNtzc3DB16lTK6i2M5cuXo6WlBSdPnkR9fT0sLCxw9OhR0oxGaWkp6VzcvXsXbW1tOHz4MOmz3nnnHaxbt47W+nYnOzsb0tLShGa7qqoK9+/fR0NDA4DO2ZnuU9BdlzfV1NRgYmKCuro63Lx5E0Dn06qrqyvk5eXR0dGB6upqPHr0SOzupIGSkJAAeXl5zJs3D2w2G0VFRTh16hQxYONwOKTlBAkJCSxevBiqqqrgcrkoKyuDj48PMQjht8PT0xNqampoaWlBUlISLl++TMnSkDgWLVqE1tZWXLx4EQ0NDTA1NcUXX3xBmtEoLy8nfacqKyuxb98+4md+P7e0tMTBgwcBdC6h/Pbbb6iuroacnBz09fWxf/9+0owCFdjZ2aGxsRH3798nLMRbt24lrv91dXUCRugtW7YQf39xRuiuy80AMHv2bFqM0Az0MKwtpd7e3kNdBUqgK//AYDMS0nTTkVlwKBCXI+OfAj+u4Z/Oli1bhroKlDAS0nQvWLCA9t9BpT5iJJhhuzOs3R8MDAwMDAzDCWb5QzyM+pyBgYGBgYGBEob1TMVIWTYY7H37dKGurj7UVRgwVG2rG2o++OCDoa7CgFm+fPlQV4ESusvW/qkM9i4xhpHJsB5UMDAwMDAwDCeY5Q/x0KY+37Bhg0AUr7Ozs0ihFFXQpQwPCgrCs2fPUFJSAikpKRgbG2PJkiW0CJTGjh0LKysrQlMdFxdH2gbaFVlZWdjb20NVVRWKiopITU0VGgCnp6dHqKrr6urw/Plzys2F3QkPDyftxFm2bJlYp0JGRgbu3LmD4uJicDgczJgxA5MnTyb+v6ioCAEBAcjLy0NlZSWWLl1K2tZJB4sWLcLy5cuhqqqKnJwcnDp1imRO7YqNjQ3+85//CLy/ceNG4m89atQorF69GrNnz4aamhry8vJw/vx5saI4KoiKisLjx4+JnTi91dCXlJSAzWZjypQpxNZsAIiLi8OtW7cEjvvmm29ozYDI4/Hg5+eH8PBwNDY2wsjICKtXr+6xfyckJMDX1xdlZWVQV1fH4sWLRQbtBgYGwtvbG9OnTye2n1PJuHHjYGNjQ+zEiYyMFDmbKScnB1dXV6irq4PD4eDly5dCt+2OHj0aTk5OMDIygrS0NOrq6hAVFUV5LpKuPH78mOjf2traeOutt0hJvrrD799FRUXgcDiYOXMmqX8DwLNnz+Dv709chxcuXEjaIcIw/KFVfT537lwUFRURr4CAAEorLwy6lOEZGRmYMmUKPvnkE3z44Yfgcrk4ceKEQGrxgWJgYAAHBwe8evUK/v7+KC0txfTp00V6GlgsFlpaWvDy5UuR2mE1NTW4u7sjOzsb/v7+yM7Ohru7OyXZQEWRkJAALy8vzJ49G5999hlMTExw+vRpke6SiooK/P777zAxMcFnn32GWbNm4fbt2ySrZ2trK1RVVeHp6dmj74EKpk2bhvfeew9Xr17Fjh078PLlS3z77bc9irjeffddLF++nHgVFBQQ/7dx40YsXLgQJ0+exObNm+Hn54dDhw6JvRgPFL6i3MPDA7t27YKhoSEuXbokVkN/6dIlGBoaYteuXZg2bRru3r2Lly9fkspJS0vjyy+/JL3oTqkcFBSEkJAQrFq1Cvv37webzcbx48fF9u/Xr1/j3LlzcHZ2xr/+9S84Ozvj7NmzQre/5uTkIDw8nDb1uYmJCdzc3JCQkIBbt26hqKgICxYsELnUy9fQJyQkiMzyyWKxsHDhQigqKiI4OBjXr1/Ho0ePiC3DdBAfHw8vLy/MmTMHn3/+eY/9u7y8HGfOnIGJiQk+//xzzJ49G7du3SL17+zsbFy6dAmOjo74/PPP4ejoiIsXL4qUlDEMT2hVn0tLS0NLS4t40Z3Dgk5l+M6dO+Hq6godHR2MGTMGa9euRVVVFeVPApaWlnj9+jUyMzNRW1uL+Ph4NDY2ipTqNDQ0IC4uDtnZ2SKz5llYWKCoqAhJSUmora1FUlISiouLRWa3pIKwsDC4uLjAzc2NmKVQVlYm5QjoSkREBJSVlbFs2TJoaWnBzc0NLi4uCA0NJcoYGBhgyZIlcHBwoCyDpjiWLVuGe/fuITAwELm5uTh9+jRKS0vh6ekp9rjq6mpUVVURr64W1ZkzZ+Lq1at4+vQpioqKcPfuXcTFxeHtt9+mrR0RERGYOHEinJyc+qWhd3JywsSJExEeHk4qJyEhAUVFRdKLTng8Hh48eIB58+bB3t4eurq62LBhA1pbW/H06VORxz148ACWlpaYN28etLS0MG/ePFhYWODBgwekcs3Nzbhw4QLWrVtHmxnT2toaqampSE1NRXV1NZ48eYL6+nqRWX/r6uoQGRmJ9PR0kVsZLSwsIC0tjaCgIBQXF6O+vh7FxcWUphrvTlhYGFxdXXvdvyMjI4X2767nICwsDObm5pg9eza0tLQwe/ZsgevwcEBCQoKy10iENvU50Glh1NDQwNixY7F161aUlpZSV3MhDKYynJ8ch0rRGIvFgoqKCoqKikjvFxUVDShIUl1dXeAzCwsLoaam1u/PFEd7ezuRUrkrFhYWIs9DTk6O0PK5ubki1ch0IikpibFjxyIuLo70fnx8vMgbAJ8zZ87gxo0b+OGHHwSmbkePHi1wc2hpaSEl+aKS9vZ2FBQUCNXQd03b3ZU3b94ILZ+fn086F62trfjuu+9w9OhR/PHHH6QZGTooLy9HbW0t6e8vJSWFsWPH4vXr1yKPy8rKEjhn48aNEzjm2rVrmDBhAm2DbRaLBXV1dYFlx/z8/AFl6DU0NERJSQkmT56M9evXY8WKFbCzs6PtptWf/p2dnS1Q3tLSktS/RV0D6EyoxkA9fRpU9EV9Pm/ePFy5cgWhoaH4z3/+g9jYWEyfPp3y5YKuiFOGi0vc1FdlOI/Hg5eXF0xMTCgV3ojTVHcfxPUFGRkZgenh5ubmAX2mOPqjRhZ1DrhcroCYbDDgcDgYNWqUwJJSVVWVyBm3iooK/Pzzz/j3v/+NQ4cOIT8/Hz/++CMpQyt/VkJXVxcSEhKwt7eHm5sbbbN4fA19X86FMAldV0010ClyW758OdavX4/Vq1dDUlISZ86coUTdLQp+HxYmFeupf3c/pvs1ITY2Frm5uVi6dCmFNSYjIyMjtH83NjYOaGZEUVERxsbGkJCQQEBAAOLj42FjYwN7e/uBVlko4vq3qPPQm/4t6jz1JIxjGF7Qoj6XkJAgBTiNHz8eEydOhIGBAfz9/fHWW28JHCtMfd7a2io249hQKcP//vtvFBQUCAjQ6IIKTfVQQJWGfSinCfuiDM/PzyfcDECnzE1dXR3Lly8n4hF+++037NmzBxcvXgTQOWMUFBSEOXPm0NQC4fRVU91dQ6+vr0+yEBsYGODEiRN48uQJFi1aREkdY2JicOXKFeJnvtGViu9D13NYWVmJGzdu4KOPPhoSzfZA+7eEhASamprw+PFjQt8uLy8PGxsbWrOW9vU8iCov7nOG43VvpC5bUAUt6nNh0+ra2towMDBARkaG0M8Wpj5ft26dWB/FUCjD//77b7x48QK7d+/ulfq6L/A11d1nEITNNPSF5uZmkjOE/5l0+Q3EqZFFrbsLeyIRpUYeDGpqatDR0SEwg6CkpCQyIFYYKSkpmDFjBulzDx48CCkpKbDZbFRUVGDLli205TLha+i7/23FaaoVFBSElu+qoe8OXypG5UyFjY0NaYcKv393V4T3p393PSY3Nxd1dXU4evQo8f9cLhcZGRl4+PAhfvvtN8KKOxCam5uF9m9ZWdkB9UX+bFTXG3BVVRXRD7vG9FCBqP4t7jyIOgdd+7eoMnTH6jBQS596Slf1efdOwFefr1y5UuhIjm/D1NbWFvrZ+/fvR01NDenV1VApDBkZGWhoaBAvbW1tQhnOh68MF7d9jq8M70p3ZTiPx8ONGzfw7NkzfPTRR7TEI3C5XFRWVgqsr2ppaYncUtobysrKBP7u2tratE1VS0pKQk9PD2lpaaT3U1NTRZ4HQ0NDAfV5amoq9PX1adNpi6O9vR3p6elwcHAgve/g4CCgcBaHqamp0Ij4trY2VFRUYNSoUXB3d6fN7ikpKQldXV1kZmaS3s/MzISBgYHQYwwMDATKZ2RkYMyYMSLPBY/HQ1FREaU3AFH9u2tf5Z8ncVuVjY2NBfp3cnIycYyFhQUOHDiAr776ingZGBjAyckJX331FSUDCgCE1Ky70ltXV3dAg0r+FuyuKCkpEcsUVMPv3937a1pamsj+bWRkJPR60LV/Gxoa9umawTA86XNvOXnyJFpaWjBnzhw8fvwYeXl5uHfvHmbNmkWoz+vr6/HJJ58gKioKOTk5ePjwIWECFLVmKS0tDTabTXr1VbbSVRn+7NkzFBYW4q+//hKqDPfx8SF+9vDwQGpqKu7fv4/i4mLcv38fqamppBwIN27cQGxsLDZu3AhpaWli4EOlXAboHMyYmprCxMQEbDab0FLzZ3hsbW0FVN/KyspQVlaGpKQkZGRkoKysTLrIpKamQltbG1ZWVmCz2bCysoK2trbAhZZKPDw8EBUVhaioKBQXF8PLywtVVVXEvnRfX1/89ddfRPnJkyejqqoKXl5eKC4uRlRUFKKjozF9+nSiDF/9nJ+fj/b2dtTU1CA/P39AAy5x3L59G/PmzcPcuXOhr6+P9957DxoaGrh79y4AYPPmzfj888+J8m+99Rbc3Nygq6sLAwMDbN68GVOmTCF91ywsLDB58mRoa2tj/Pjx+Pbbb8FisXDjxg1a2gB0/m1jY2MRGxuL0tJS3L17V0BD3/X3Ozs7o6qqCn5+figtLUVsbCzi4uLg7u5OlAkJCUF6ejoqKipQWFiIW7duobCwkJTLgmokJCQwY8YMBAYGIjExEQUFBfjjjz+IHA18Ll26hDt37hA/z5gxA8nJybh37x6Ki4tx79490gySjIwMdHV1SS9paWnIy8tDV1eX0ja8ePECFhYWMDc3h5KSEtzc3KCoqEgMVJ2cnARyr6iqqkJVVRWSkpKQlZWFqqoqaZY0KSmJ0KZzOBzo6+vDzs4OSUlJlNa9K9379+3bt1FZWUnq33wFPQBMmjQJlZWVpP4dFRVFmsWbNm0aUlNTERwcjOLiYgQHByMtLY32XDR9hdn9IR5a1OdNTU14+fIl/vzzT1RXV0NbWxseHh64ceMG7VNZdCnD+dvpjh8/Tvp9a9euhaurK2X1f/PmDaSlpTFhwgQi+VVYWBgRICcrKyuwHNDVzKeqqgojIyPU19cTltfy8nJERETAxsYGNjY2qK+vR3h4OK1bzuzt7dHQ0ICgoCDU1NRAW1sbO3bsIJYTamtrBdTI27dvx507dxAeHg4Oh4Nly5aREpDV1NTghx9+IH4ODQ1FaGgoTE1NsWvXLsrb8PDhQ7DZbKxduxYqKirIycnBF198QexiUlFRIeWskJSUxPbt2wmN9ps3b/DFF1+QtjuOHj0aGzduhLa2NpqamvD06VN8//33tOYUsLGxQWNjI6Gh19LSImnoa2trBTT0/P4QFRVFaOi7Bpw2NTXBy8sLdXV1kJGRgY6ODrZv3y7wFE41c+bMQVtbG65evUokv/roo49I/buyspLUv01MTAjttq+vL9TV1bF169YheQJ+/fo1ZGRkMHHiRMjJyaGyshIBAQFEsKK8vLzANbJrOnMNDQ2YmZmhrq6OiDdpaGiAv78/3NzcsHz5cjQ0NODly5ekHBBU4+DggIaGBty7d49IfvXee+8R/bumpobUv9XU1LBjxw54eXkhPDwcbDYbb7/9Nql/GxsbY8OGDfDz84O/vz/U1NSwceNG0hI3w/BnWKvPQ0JChroKlMC4P4YPP/7441BXgRJGgvuD6pikoaL7MsA/lZHg/pg9e/ZQV+H/PIyllIGBgYGBgYESmEEFAwMDAwMDAzXw/g/T3NzMO3jwIK+5uXmoqzIgRkI7RkIbeDymHcOJkdAGHm9ktGMktIGhdwzrmAq64eezqKmpGRRBFV2MhHaMhDYATDuGEyOhDcDIaMdIaAND72CWPxgYGBgYGBgogRlUMDAwMDAwMFACM6hgYGBgYGBgoIT/04MKaWlpHDx4ENLS0kNdlQExEtoxEtoAMO0YToyENgAjox0joQ0MveP/dKAmAwMDAwMDA3X8n56pYGBgYGBgYKAOZlDBwMDAwMDAQAnMoIKBgYGBgYGBEkbsoILH42Hbtm1QUVGBhIQErcY+OmHaMXwYCW0ARkY7RkIbAKYdDCOQoUnkST8BAQE8KSkpXmRkJK+oqIjX1tbW4zGHDx/mubq68mRlZXkcDof+SvaCvrYjOzubt2nTJp6hoSFPRkaGZ2xszDtw4ACvpaVlkGosnP6cD09PT56enh5PWlqap6WlxVu7di2voKBgEGornP60gU9zczPPxsaGB4CXmJhIXyV7QX/aYWBgwANAen3++eeDUFvh9Pdc+Pn58ZycnHgyMjI8VVVV3tKlS2muqXj62o6wsDCB88B/PX36dJBqLUh/zkdaWhpv0aJFPFVVVZ6ioiLPzc2NFxoaOgi1ZaATySEay9DO69evoa2tDTc3t14f09raiuXLl8PV1RUXLlygsXa9p6/tSE1NBZfLxe+//w5TU1O8evUKW7duRUNDA3766Seaayua/pwPDw8PfPHFF9DW1kZBQQE++eQTvP3223jy5AmNNRVNf9rA57PPPoOOjg6eP39OQ836Rn/b8fXXX2Pr1q3EzwoKClRXrdf0pw23b9/G1q1bcfToUUyfPh08Hg8vX76ksZY909d2uLm5oaioiPTev/71L4SEhGDixIl0VLFX9Od8LFiwAGPHjkVoaChkZWVx/PhxLFy4EK9fv4aWlhaNtWWglaEe1dDBu+++SxrBGxgY8AIDA3mTJk3icTgcnoqKCm/BggW8zMxMocdfunRpWMxUDLQdfH744QeekZHRINVaEKra4ePjw5OQkOC1trYOUs3/x0DaEBAQwLOwsOAlJSUN+UxFf9thYGDAO3bs2NBUuhv9aUNbWxtPV1eXd/78+SGsORkq+kVraytPQ0OD9/XXXw9izcn0px1lZWU8ALzHjx8T79XW1vIA8EJCQoaiGQwUMSJjKn755Rd8/fXXGDNmDIqKihAbG4uGhgbs2bMHsbGxePDgAVgsFpYuXQoulzvU1RUJVe2oqamBiorKINacDBXtqKysxJUrV+Dm5gYpKalBbkH/21BSUoKtW7fir7/+gpyc3KDXuzsDORfff/89VFVVYWtriyNHjqC1tfUf04aEhAQUFBSAxWLBzs4O2tramDdvHpKSkoakDf1tR3d8fX1RXl6ODRs2DG7lu9CfdqiqqsLS0hJ//vknGhoa0N7ejt9//x2amppwcHAYsrYwUMBQj2ro4tixYzwDAwOR/19aWsoDwHv58qXA/w2XmQoeb2Dt4PF4vMzMTB6bzeadO3eOphr2jv6247PPPuPJycnxAPBcXFx45eXlNNdUNH1tA5fL5c2dO5f3zTff8Hi8zngXDIOYiv6ci59//pn38OFD3vPnz3nnzp3jqamp8TZv3jwItRVOX9tw7do1HgCevr4+79atW7y4uDje6tWreaqqqryKiopBqrUgA+3f8+bN482bN4+m2vWe/rQjPz+f5+DgwJOQkOCNGjWKp6OjM+R9g2HgjMiZCmG8fv0aa9asgbGxMdhsNoyMjAAAubm5Q1yzvtGXdhQWFmLu3LlYvnw5tmzZMthVFUtv2/Hpp58iMTER9+/fx6hRo7B+/XrwhkkS2J7acOLECdTW1mL//v1DWc0e6c252L17N6ZOnQpra2ts2bIFZ86cwYULF1BRUTFU1SbRUxv4T8hffvklli1bBgcHB1y6dAkSEhK4efPmkNW7O33p3/n5+QgKCsLmzZsHu5o90lM7eDwe3n//fWhoaCA8PBxPnz7F4sWLsXDhQoGYEYZ/FiM2ULM7np6e0NPTw7lz56CjowMul4vx48cP2RRuf+ltOwoLC+Hh4QFXV1ecPXt2iGormt62Q01NDWpqahg7diwsLS2hp6eH6OhouLq6DlHN/0dPbQgNDUV0dLSA72DixIl45513cPny5aGotgD96RsuLi4AgMzMTKiqqg5WVUXSUxu0tbUBAFZWVsQx0tLSMDY2HlYPFn05F5cuXYKqqioWLVo0BDUVT2/6hp+fH6qqqsBmswEAp06dQnBwMC5fvox9+/YNZfUZBsD/iUFFRUUFUlJS8Pvvv8Pd3R0AEBERMcS16ju9bUdBQQE8PDyIpzEWa3hNSPX3fPBnKFpaWmitX2/oTRt+/fVXHD58mPi5sLAQc+bMwY0bN+Ds7Dyo9RVFf89FYmIigP/drIeS3rTBwcEB0tLSSEtLw+TJkwEAbW1tyMnJgYGBwaDXWRh9ORc8Hg+XLl3C+vXrhyTGSBy9aUdjYyMACFybWCzWsI5zY+iZ/xODCmVlZaiqquLs2bPQ1tZGbm6u0JFwbm4uKisrkZubi46ODiKBi6mp6ZBun+PTm3YUFhZi2rRp0NfXx08//YSysjLi/4bLNq3etOPp06d4+vQpJk+eDGVlZWRlZeHAgQMwMTEZFrMUvWmDvr4+6Wf+d8jExARjxowZtLqKozftiIqKQnR0NDw8PMDhcBAbG4vdu3dj0aJFAm0cCnrTBjabjR07duDgwYPQ09ODgYEBfvzxRwDA8uXLh6LaAvT2OgV0PulnZ2cPy6WP3rTD1dUVysrKePfdd3HgwAHIysri3LlzyM7OxoIFC4ao5gyUMLQhHfTRPXAoODiYZ2lpyZOWluZZW1vzHj58yAPAu3PnDlGm+9Yo/issLGzQ68+nr+24dOmSyOQ4Q0lf2/HixQueh4cHT0VFhSctLc0zNDTk7dixg5efnz80DeD17zvVleEaqNlTO+Lj43nOzs48DofDk5GR4Zmbm/MOHjzIa2hoGJoG8Pp3LlpbW3l79+7laWho8BQVFXkzZ87kvXr1avAr34X+fqdWr17Nc3NzG9zKiqE/7YiNjeXNnj2bp6KiwlNUVOS5uLjwAgICBr/yDJTCqM8ZGBgYGBgYKGF4LbYzMDAwMDAw/GNhBhUMDAwMDAwMlMAMKhgYGBgYGBgogRlUMDAwMDAwMFACM6hgYGBgYGBgoARmUMHAwMDAwMBACcyggoGBgYGBgYESmEEFAwMDAwMDAyUwgwoGBgYGBgYGSmAGFQwMDAwMDAyUwAwqGBgYGBgYGCiBGVQwMDAwMDAwUML/A4ffxH/HRAx+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 8 factors\n", "big8_efa = FactorAnalyzer(n_factors=8).fit(bf3)\n", "\n", "# Examine the loadings\n", "loadings_8 = pd.DataFrame(big8_efa.loadings_, index=bf3.columns, columns=['fa1', 'fa2', 'fa3', 'fa4', 'fa5', 'fa6', 'fa7', 'fa8'])\n", "\n", "# Heatmap\n", "sns.heatmap(loadings_8, cmap='Greys', annot=True, fmt='.2f')" ] }, { "cell_type": "markdown", "id": "a23160a1-c1f9-4e63-a5e4-b49becaeeff4", "metadata": {}, "source": [ "Notice here that while traits like Neuroticism and Openness orrelate with one factor (number 1 and 4 respectively), there are 'dilutions' of other traits across factors - Extraversion is spread across factors 2 and 5, and some aspects of it onto factor 8. This would be a cause for concern for psychometricians hoping for a neat set of questions measuring 5 latent factors and might result in a re-thinking of certain questions. " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 5 }